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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.

II. Complex analysis.

III. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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vi FOREWORD

problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and Jose Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002
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Introduction

... In effect, if one extends these functions by allowing
complex values for the arguments, then there arises
a harmony and regularity which without it would re-
main hidden.

B. Riemann, 1851

When we begin the study of complex analysis we enter a marvelous
world, full of wonderful insights. We are tempted to use the adjectives
magical, or even miraculous when describing the first theorems we learn;
and in pursuing the subject, we continue to be astonished by the elegance
and sweep of the results.

The starting point of our study is the idea of extending a function
initially given for real values of the argument to one that is defined when
the argument is complex. Thus, here the central objects are functions
from the complex plane to itself

f : C → C,

or more generally, complex-valued functions defined on open subsets of C.
At first, one might object that nothing new is gained from this extension,
since any complex number z can be written as z = x+ iy where x, y ∈ R

and z is identified with the point (x, y) in R2.
However, everything changes drastically if we make a natural, but

misleadingly simple-looking assumption on f : that it is differentiable
in the complex sense. This condition is called holomorphicity, and it
shapes most of the theory discussed in this book.

A function f : C → C is holomorphic at the point z ∈ C if the limit

lim
h→0

f(z + h) − f(z)
h

(h ∈ C)

exists. This is similar to the definition of differentiability in the case of
a real argument, except that we allow h to take complex values. The
reason this assumption is so far-reaching is that, in fact, it encompasses
a multiplicity of conditions: so to speak, one for each angle that h can
approach zero.

xv



xv INTRODUCTION

Although one might now be tempted to prove theorems about holo-
morphic functions in terms of real variables, the reader will soon discover
that complex analysis is a new subject, one which supplies proofs to the
theorems that are proper to its own nature. In fact, the proofs of the
main properties of holomorphic functions which we discuss in the next
chapters are generally very short and quite illuminating.

The study of complex analysis proceeds along two paths that often
intersect. In following the first way, we seek to understand the univer-
sal characteristics of holomorphic functions, without special regard for
specific examples. The second approach is the analysis of some partic-
ular functions that have proved to be of great interest in other areas of
mathematics. Of course, we cannot go too far along either path without
having traveled some way along the other. We shall start our study with
some general characteristic properties of holomorphic functions, which
are subsumed by three rather miraculous facts:

1. Contour integration: If f is holomorphic in Ω, then for appro-
priate closed paths in Ω ∫

γ

f(z)dz = 0.

2. Regularity: If f is holomorphic, then f is indefinitely differen-
tiable.

3. Analytic continuation: If f and g are holomorphic functions
in Ω which are equal in an arbitrarily small disc in Ω, then f = g
everywhere in Ω.

These three phenomena and other general properties of holomorphic
functions are treated in the beginning chapters of this book. Instead
of trying to summarize the contents of the rest of this volume, we men-
tion briefly several other highlights of the subject.

• The zeta function, which is expressed as an infinite series

ζ(s) =
∞∑

n=1

1
ns
,

and is initially defined and holomorphic in the half-plane Re(s) > 1,
where the convergence of the sum is guaranteed. This function
and its variants (the L-series) are central in the theory of prime
numbers, and have already appeared in Chapter 8 of Book I, where

i



INTRODUCTION xv

we proved Dirichlet’s theorem. Here we will prove that ζ extends to
a meromorphic function with a pole at s = 1. We shall see that the
behavior of ζ(s) for Re(s) = 1 (and in particular that ζ does not
vanish on that line) leads to a proof of the prime number theorem.

• The theta function

Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz ,

which in fact is a function of the two complex variables z and τ ,
holomorphic for all z, but only for τ in the half-plane Im(τ) > 0.
On the one hand, when we fix τ , and think of Θ as a function of
z, it is closely related to the theory of elliptic (doubly-periodic)
functions. On the other hand, when z is fixed, Θ displays features
of a modular function in the upper half-plane. The function Θ(z|τ)
arose in Book I as a fundamental solution of the heat equation on
the circle. It will be used again in the study of the zeta function, as
well as in the proof of certain results in combinatorics and number
theory given in Chapters 6 and 10.

Two additional noteworthy topics that we treat are: the Fourier trans-
form with its elegant connection to complex analysis via contour integra-
tion, and the resulting applications of the Poisson summation formula;
also conformal mappings, with the mappings of polygons whose inverses
are realized by the Schwarz-Christoffel formula, and the particular case
of the rectangle, which leads to elliptic integrals and elliptic functions.

ii





1 Preliminaries to Complex
Analysis

The sweeping development of mathematics during the
last two centuries is due in large part to the introduc-
tion of complex numbers; paradoxically, this is based
on the seemingly absurd notion that there are num-
bers whose squares are negative.

E. Borel, 1952

This chapter is devoted to the exposition of basic preliminary material
which we use extensively throughout of this book.

We begin with a quick review of the algebraic and analytic properties
of complex numbers followed by some topological notions of sets in the
complex plane. (See also the exercises at the end of Chapter 1 in Book I.)

Then, we define precisely the key notion of holomorphicity, which is
the complex analytic version of differentiability. This allows us to discuss
the Cauchy-Riemann equations, and power series.

Finally, we define the notion of a curve and the integral of a function
along it. In particular, we shall prove an important result, which we state
loosely as follows: if a function f has a primitive, in the sense that there
exists a function F that is holomorphic and whose derivative is precisely
f , then for any closed curve γ∫

γ

f(z) dz = 0.

This is the first step towards Cauchy’s theorem, which plays a central
role in complex function theory.

1 Complex numbers and the complex plane

Many of the facts covered in this section were already used in Book I.

1.1 Basic properties

A complex number takes the form z = x+ iy where x and y are real,
and i is an imaginary number that satisfies i2 = −1. We call x and y the
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real part and the imaginary part of z, respectively, and we write

x = Re(z) and y = Im(z).

The real numbers are precisely those complex numbers with zero imagi-
nary parts. A complex number with zero real part is said to be purely
imaginary.

Throughout our presentation, the set of all complex numbers is de-
noted by C. The complex numbers can be visualized as the usual Eu-
clidean plane by the following simple identification: the complex number
z = x+ iy ∈ C is identified with the point (x, y) ∈ R2. For example, 0
corresponds to the origin and i corresponds to (0, 1). Naturally, the x
and y axis of R2 are called the real axis and imaginary axis, because
they correspond to the real and purely imaginary numbers, respectively.
(See Figure 1.)

Real axis

Im
ag

in
ar

y 
ax

is

z = x+ iy = (x, y)

x0 1

i

iy

Figure 1. The complex plane

The natural rules for adding and multiplying complex numbers can be
obtained simply by treating all numbers as if they were real, and keeping
in mind that i2 = −1. If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

and also

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).



1. Complex numbers and the complex plane 3

If we take the two expressions above as the definitions of addition and
multiplication, it is a simple matter to verify the following desirable
properties:

• Commutativity: z1 + z2 = z2 + z1 and z1z2 = z2z1 for all z1, z2∈C.

• Associativity: (z1 + z2) + z3 = z1 + (z2 + z3); and (z1z2)z3 =
z1(z2z3) for z1, z2, z3 ∈ C.

• Distributivity: z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C.

Of course, addition of complex numbers corresponds to addition of the
corresponding vectors in the plane R2. Multiplication, however, consists
of a rotation composed with a dilation, a fact that will become transpar-
ent once we have introduced the polar form of a complex number. At
present we observe that multiplication by i corresponds to a rotation by
an angle of π/2.

The notion of length, or absolute value of a complex number is identical
to the notion of Euclidean length in R2. More precisely, we define the
absolute value of a complex number z = x+ iy by

|z| = (x2 + y2)1/2,

so that |z| is precisely the distance from the origin to the point (x, y). In
particular, the triangle inequality holds:

|z + w| ≤ |z| + |w| for all z, w ∈ C.

We record here other useful inequalities. For all z ∈ C we have both
|Re(z)| ≤ |z| and |Im(z)| ≤ |z|, and for all z, w ∈ C

||z| − |w|| ≤ |z − w|.

This follows from the triangle inequality since

|z| ≤ |z − w| + |w| and |w| ≤ |z − w| + |z|.

The complex conjugate of z = x+ iy is defined by

z = x− iy,

and it is obtained by a reflection across the real axis in the plane. In
fact a complex number z is real if and only if z = z, and it is purely
imaginary if and only if z = −z.
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The reader should have no difficulty checking that

Re(z) =
z + z

2
and Im(z) =

z − z

2i
.

Also, one has

|z|2 = zz and as a consequence
1
z

=
z

|z|2 whenever z �= 0.

Any non-zero complex number z can be written in polar form

z = reiθ ,

where r > 0; also θ ∈ R is called the argument of z (defined uniquely
up to a multiple of 2π) and is often denoted by arg z, and

eiθ = cos θ + i sin θ.

Since |eiθ| = 1 we observe that r = |z|, and θ is simply the angle (with
positive counterclockwise orientation) between the positive real axis and
the half-line starting at the origin and passing through z. (See Figure 2.)

r

θ

0

z = reiθ

Figure 2. The polar form of a complex number

Finally, note that if z = reiθ and w = seiϕ, then

zw = rsei(θ+ϕ),

so multiplication by a complex number corresponds to a homothety in
R2 (that is, a rotation composed with a dilation).



1. Complex numbers and the complex plane 5

1.2 Convergence

We make a transition from the arithmetic and geometric properties of
complex numbers described above to the key notions of convergence and
limits.

A sequence {z1, z2, . . .} of complex numbers is said to converge to
w ∈ C if

lim
n→∞

|zn − w| = 0, and we write w = lim
n→∞

zn.

This notion of convergence is not new. Indeed, since absolute values in
C and Euclidean distances in R2 coincide, we see that zn converges to w
if and only if the corresponding sequence of points in the complex plane
converges to the point that corresponds to w.

As an exercise, the reader can check that the sequence {zn} converges
to w if and only if the sequence of real and imaginary parts of zn converge
to the real and imaginary parts of w, respectively.

Since it is sometimes not possible to readily identify the limit of a
sequence (for example, limN→∞

∑N
n=1 1/n3), it is convenient to have a

condition on the sequence itself which is equivalent to its convergence. A
sequence {zn} is said to be a Cauchy sequence (or simply Cauchy) if

|zn − zm| → 0 as n,m→ ∞.

In other words, given ε > 0 there exists an integer N > 0 so that
|zn − zm| < ε whenever n,m > N . An important fact of real analysis
is that R is complete: every Cauchy sequence of real numbers converges
to a real number.1 Since the sequence {zn} is Cauchy if and only if the
sequences of real and imaginary parts of zn are, we conclude that every
Cauchy sequence in C has a limit in C. We have thus the following result.

Theorem 1.1 C, the complex numbers, is complete.

We now turn our attention to some simple topological considerations
that are necessary in our study of functions. Here again, the reader will
note that no new notions are introduced, but rather previous notions are
now presented in terms of a new vocabulary.

1.3 Sets in the complex plane

If z0 ∈ C and r > 0, we define the open disc Dr(z0) of radius r cen-
tered at z0 to be the set of all complex numbers that are at absolute

1This is sometimes called the Bolzano-Weierstrass theorem.
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value strictly less than r from z0. In other words,

Dr(z0) = {z ∈ C : |z − z0| < r},

and this is precisely the usual disc in the plane of radius r centered at
z0. The closed disc Dr(z0) of radius r centered at z0 is defined by

Dr(z0) = {z ∈ C : |z − z0| ≤ r},

and the boundary of either the open or closed disc is the circle

Cr(z0) = {z ∈ C : |z − z0| = r}.

Since the unit disc (that is, the open disc centered at the origin and of
radius 1) plays an important role in later chapters, we will often denote
it by D,

D = {z ∈ C : |z| < 1}.

Given a set Ω ⊂ C, a point z0 is an interior point of Ω if there exists
r > 0 such that

Dr(z0) ⊂ Ω.

The interior of Ω consists of all its interior points. Finally, a set Ω is
open if every point in that set is an interior point of Ω. This definition
coincides precisely with the definition of an open set in R2.

A set Ω is closed if its complement Ωc = C − Ω is open. This property
can be reformulated in terms of limit points. A point z ∈ C is said to
be a limit point of the set Ω if there exists a sequence of points zn ∈ Ω
such that zn �= z and limn→∞ zn = z. The reader can now check that a
set is closed if and only if it contains all its limit points. The closure of
any set Ω is the union of Ω and its limit points, and is often denoted by
Ω.

Finally, the boundary of a set Ω is equal to its closure minus its
interior, and is often denoted by ∂Ω.

A set Ω is bounded if there exists M > 0 such that |z| < M whenever
z ∈ Ω. In other words, the set Ω is contained in some large disc. If Ω is
bounded, we define its diameter by

diam(Ω) = sup
z,w∈Ω

|z − w|.

A set Ω is said to be compact if it is closed and bounded. Arguing
as in the case of real variables, one can prove the following.



1. Complex numbers and the complex plane 7

Theorem 1.2 The set Ω ⊂ C is compact if and only if every sequence
{zn} ⊂ Ω has a subsequence that converges to a point in Ω.

An open covering of Ω is a family of open sets {Uα} (not necessarily
countable) such that

Ω ⊂
⋃
α

Uα.

In analogy with the situation in R, we have the following equivalent
formulation of compactness.

Theorem 1.3 A set Ω is compact if and only if every open covering of
Ω has a finite subcovering.

Another interesting property of compactness is that of nested sets.
We shall in fact use this result at the very beginning of our study of
complex function theory, more precisely in the proof of Goursat’s theorem
in Chapter 2.

Proposition 1.4 If Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn ⊃ · · · is a sequence of non-empty
compact sets in C with the property that

diam(Ωn) → 0 as n→ ∞,

then there exists a unique point w ∈ C such that w ∈ Ωn for all n.

Proof. Choose a point zn in each Ωn. The condition diam(Ωn) → 0
says precisely that {zn} is a Cauchy sequence, therefore this sequence
converges to a limit that we call w. Since each set Ωn is compact we
must have w ∈ Ωn for all n. Finally, w is the unique point satisfying this
property, for otherwise, if w′ satisfied the same property with w′ �= w
we would have |w − w′| > 0 and the condition diam(Ωn) → 0 would be
violated.

The last notion we need is that of connectedness. An open set Ω ⊂ C is
said to be connected if it is not possible to find two disjoint non-empty
open sets Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2.

A connected open set in C will be called a region. Similarly, a closed
set F is connected if one cannot write F = F1 ∪ F2 where F1 and F2 are
disjoint non-empty closed sets.

There is an equivalent definition of connectedness for open sets in terms
of curves, which is often useful in practice: an open set Ω is connected
if and only if any two points in Ω can be joined by a curve γ entirely
contained in Ω. See Exercise 5 for more details.
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2 Functions on the complex plane

2.1 Continuous functions

Let f be a function defined on a set Ω of complex numbers. We say that
f is continuous at the point z0 ∈ Ω if for every ε > 0 there exists δ > 0
such that whenever z ∈ Ω and |z − z0| < δ then |f(z) − f(z0)| < ε. An
equivalent definition is that for every sequence {z1, z2, . . .} ⊂ Ω such that
lim zn = z0, then lim f(zn) = f(z0).

The function f is said to be continuous on Ω if it is continuous at
every point of Ω. Sums and products of continuous functions are also
continuous.

Since the notions of convergence for complex numbers and points in
R2 are the same, the function f of the complex argument z = x+ iy is
continuous if and only if it is continuous viewed as a function of the two
real variables x and y.

By the triangle inequality, it is immediate that if f is continuous, then
the real-valued function defined by z 	→ |f(z)| is continuous. We say that
f attains a maximum at the point z0 ∈ Ω if

|f(z)| ≤ |f(z0)| for all z ∈ Ω,

with the inequality reversed for the definition of a minimum.

Theorem 2.1 A continuous function on a compact set Ω is bounded and
attains a maximum and minimum on Ω.

This is of course analogous to the situation of functions of a real vari-
able, and we shall not repeat the simple proof here.

2.2 Holomorphic functions

We now present a notion that is central to complex analysis, and in
distinction to our previous discussion we introduce a definition that is
genuinely complex in nature.

Let Ω be an open set in C and f a complex-valued function on Ω. The
function f is holomorphic at the point z0 ∈ Ω if the quotient

(1)
f(z0 + h) − f(z0)

h

converges to a limit when h→ 0. Here h ∈ C and h �= 0 with z0 + h ∈ Ω,
so that the quotient is well defined. The limit of the quotient, when it
exists, is denoted by f ′(z0), and is called the derivative of f at z0:

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)
h

.
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It should be emphasized that in the above limit, h is a complex number
that may approach 0 from any direction.

The function f is said to be holomorphic on Ω if f is holomorphic
at every point of Ω. If C is a closed subset of C, we say that f is
holomorphic on C if f is holomorphic in some open set containing C.
Finally, if f is holomorphic in all of C we say that f is entire.

Sometimes the terms regular or complex differentiable are used in-
stead of holomorphic. The latter is natural in view of (1) which mimics
the usual definition of the derivative of a function of one real variable.
But despite this resemblance, a holomorphic function of one complex
variable will satisfy much stronger properties than a differentiable func-
tion of one real variable. For example, a holomorphic function will actu-
ally be infinitely many times complex differentiable, that is, the existence
of the first derivative will guarantee the existence of derivatives of any
order. This is in contrast with functions of one real variable, since there
are differentiable functions that do not have two derivatives. In fact more
is true: every holomorphic function is analytic, in the sense that it has a
power series expansion near every point (power series will be discussed
in the next section), and for this reason we also use the term analytic
as a synonym for holomorphic. Again, this is in contrast with the fact
that there are indefinitely differentiable functions of one real variable
that cannot be expanded in a power series. (See Exercise 23.)

Example 1. The function f(z) = z is holomorphic on any open set in
C, and f ′(z) = 1. In fact, any polynomial

p(z) = a0 + a1z + · · · + anz
n

is holomorphic in the entire complex plane and

p′(z) = a1 + · · · + nanz
n−1.

This follows from Proposition 2.2 below.

Example 2. The function 1/z is holomorphic on any open set in C that
does not contain the origin, and f ′(z) = −1/z2.

Example 3. The function f(z) = z is not holomorphic. Indeed, we have

f(z0 + h) − f(z0)
h

=
h

h

which has no limit as h→ 0, as one can see by first taking h real and
then h purely imaginary.
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An important family of examples of holomorphic functions, which
we discuss later, are the power series. They contain functions such as
ez, sin z, or cos z, and in fact power series play a crucial role in the theory
of holomorphic functions, as we already mentioned in the last paragraph.
Some other examples of holomorphic functions that will make their ap-
pearance in later chapters were given in the introduction to this book.

It is clear from (1) above that a function f is holomorphic at z0 ∈ Ω
if and only if there exists a complex number a such that

(2) f(z0 + h) − f(z0) − ah = hψ(h),

where ψ is a function defined for all small h and limh→0 ψ(h) = 0. Of
course, we have a = f ′(z0). From this formulation, it is clear that f is
continuous wherever it is holomorphic. Arguing as in the case of one real
variable, using formulation (2) in the case of the chain rule (for exam-
ple), one proves easily the following desirable properties of holomorphic
functions.

Proposition 2.2 If f and g are holomorphic in Ω, then:

(i) f + g is holomorphic in Ω and (f + g)′ = f ′ + g′.

(ii) fg is holomorphic in Ω and (fg)′ = f ′g + fg′.

(iii) If g(z0) �= 0, then f/g is holomorphic at z0 and

(f/g)′ =
f ′g − fg′

g2
.

Moreover, if f : Ω → U and g : U → C are holomorphic, the chain rule
holds

(g ◦ f)′(z) = g′(f(z))f ′(z) for all z ∈ Ω.

Complex-valued functions as mappings

We now clarify the relationship between the complex and real deriva-
tives. In fact, the third example above should convince the reader that
the notion of complex differentiability differs significantly from the usual
notion of real differentiability of a function of two real variables. Indeed,
in terms of real variables, the function f(z) = z corresponds to the map
F : (x, y) 	→ (x,−y), which is differentiable in the real sense. Its deriva-
tive at a point is the linear map given by its Jacobian, the 2 × 2 matrix
of partial derivatives of the coordinate functions. In fact, F is linear and
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is therefore equal to its derivative at every point. This implies that F is
actually indefinitely differentiable. In particular the existence of the real
derivative need not guarantee that f is holomorphic.

This example leads us to associate more generally to each complex-
valued function f = u+ iv the mapping F (x, y) = (u(x, y), v(x, y)) from
R2 to R2.

Recall that a function F (x, y) = (u(x, y), v(x, y)) is said to be differ-
entiable at a point P0 = (x0, y0) if there exists a linear transformation
J : R2 → R2 such that

(3)
|F (P0 +H) − F (P0) − J(H)|

|H| → 0 as |H| → 0, H ∈ R2.

Equivalently, we can write

F (P0 +H) − F (P0) = J(H) + |H|Ψ(H) ,

with |Ψ(H)| → 0 as |H| → 0. The linear transformation J is unique and
is called the derivative of F at P0. If F is differentiable, the partial
derivatives of u and v exist, and the linear transformation J is described
in the standard basis of R2 by the Jacobian matrix of F

J = JF (x, y) =
(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
.

In the case of complex differentiation the derivative is a complex number
f ′(z0), while in the case of real derivatives, it is a matrix. There is,
however, a connection between these two notions, which is given in terms
of special relations that are satisfied by the entries of the Jacobian matrix,
that is, the partials of u and v. To find these relations, consider the limit
in (1) when h is first real, say h = h1 + ih2 with h2 = 0. Then, if we
write z = x+ iy, z0 = x0 + iy0, and f(z) = f(x, y), we find that

f ′(z0) = lim
h1→0

f(x0 + h1, y0) − f(x0, y0)
h1

=
∂f

∂x
(z0),

where ∂/∂x denotes the usual partial derivative in the x variable. (We fix
y0 and think of f as a complex-valued function of the single real variable
x.) Now taking h purely imaginary, say h = ih2, a similar argument
yields
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f ′(z0) = lim
h2→0

f(x0, y0 + h2) − f(x0, y0)
ih2

=
1
i

∂f

∂y
(z0),

where ∂/∂y is partial differentiation in the y variable. Therefore, if f is
holomorphic we have shown that

∂f

∂x
=

1
i

∂f

∂y
.

Writing f = u+ iv, we find after separating real and imaginary parts
and using 1/i = −i, that the partials of u and v exist, and they satisfy
the following non-trivial relations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

These are the Cauchy-Riemann equations, which link real and complex
analysis.

We can clarify the situation further by defining two differential oper-
ators

∂

∂z
=

1
2

(
∂

∂x
+

1
i

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
− 1
i

∂

∂y

)
.

Proposition 2.3 If f is holomorphic at z0, then

∂f

∂z
(z0) = 0 and f ′(z0) =

∂f

∂z
(z0) = 2

∂u

∂z
(z0).

Also, if we write F (x, y) = f(z), then F is differentiable in the sense of
real variables, and

det JF (x0, y0) = |f ′(z0)|2.

Proof. Taking real and imaginary parts, it is easy to see that the
Cauchy-Riemann equations are equivalent to ∂f/∂z = 0. Moreover, by
our earlier observation

f ′(z0) =
1
2

(
∂f

∂x
(z0) +

1
i

∂f

∂y
(z0)
)

=
∂f

∂z
(z0),
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and the Cauchy-Riemann equations give ∂f/∂z = 2∂u/∂z. To prove
that F is differentiable it suffices to observe that if H = (h1, h2) and
h = h1 + ih2, then the Cauchy-Riemann equations imply

JF (x0, y0)(H) =
(
∂u

∂x
− i

∂u

∂y

)
(h1 + ih2) = f ′(z0)h ,

where we have identified a complex number with the pair of real and
imaginary parts. After a final application of the Cauchy-Riemann equa-
tions, the above results imply that
(4)

det JF (x0, y0) =
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

=
∣∣∣∣2∂u∂z

∣∣∣∣2 = |f ′(z0)|2.

So far, we have assumed that f is holomorphic and deduced relations
satisfied by its real and imaginary parts. The next theorem contains an
important converse, which completes the circle of ideas presented here.

Theorem 2.4 Suppose f = u+ iv is a complex-valued function defined
on an open set Ω. If u and v are continuously differentiable and satisfy
the Cauchy-Riemann equations on Ω, then f is holomorphic on Ω and
f ′(z) = ∂f/∂z.

Proof. Write

u(x+ h1, y + h2) − u(x, y) =
∂u

∂x
h1 +

∂u

∂y
h2 + |h|ψ1(h)

and

v(x+ h1, y + h2) − v(x, y) =
∂v

∂x
h1 +

∂v

∂y
h2 + |h|ψ2(h),

where ψj(h) → 0 (for j = 1, 2) as |h| tends to 0, and h = h1 + ih2. Using
the Cauchy-Riemann equations we find that

f(z + h) − f(z) =
(
∂u

∂x
− i

∂u

∂y

)
(h1 + ih2) + |h|ψ(h),

where ψ(h) = ψ1(h) + ψ2(h) → 0, as |h| → 0. Therefore f is holomorphic
and

f ′(z) = 2
∂u

∂z
=
∂f

∂z
.
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2.3 Power series

The prime example of a power series is the complex exponential func-
tion, which is defined for z ∈ C by

ez =
∞∑

n=0

zn

n!
.

When z is real, this definition coincides with the usual exponential func-
tion, and in fact, the series above converges absolutely for every z ∈ C.
To see this, note that ∣∣∣∣zn

n!

∣∣∣∣ = |z|n
n!

,

so |ez| can be compared to the series
∑

|z|n/n! = e|z| <∞. In fact, this
estimate shows that the series defining ez is uniformly convergent in every
disc in C.

In this section we will prove that ez is holomorphic in all of C (it is
entire), and that its derivative can be found by differentiating the series
term by term. Hence

(ez)′ =
∞∑

n=0

n
zn−1

n!
=

∞∑
m=0

zm

m!
= ez,

and therefore ez is its own derivative.
In contrast, the geometric series

∞∑
n=0

zn

converges absolutely only in the disc |z| < 1, and its sum there is the
function 1/(1 − z), which is holomorphic in the open set C − {1}. This
identity is proved exactly as when z is real: we first observe

N∑
n=0

zn =
1 − zN+1

1 − z
,

and then note that if |z| < 1 we must have limN→∞ zN+1 = 0.
In general, a power series is an expansion of the form

(5)
∞∑

n=0

anz
n ,
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where an ∈ C. To test for absolute convergence of this series, we must
investigate

∞∑
n=0

|an| |z|n ,

and we observe that if the series (5) converges absolutely for some z0,
then it will also converge for all z in the disc |z| ≤ |z0|. We now prove
that there always exists an open disc (possibly empty) on which the
power series converges absolutely.

Theorem 2.5 Given a power series
∑∞

n=0 anz
n, there exists 0 ≤ R ≤ ∞

such that:

(i) If |z| < R the series converges absolutely.

(ii) If |z| > R the series diverges.

Moreover, if we use the convention that 1/0 = ∞ and 1/∞ = 0, then R
is given by Hadamard’s formula

1/R = lim sup |an|1/n.

The number R is called the radius of convergence of the power series,
and the region |z| < R the disc of convergence. In particular, we
have R = ∞ in the case of the exponential function, and R = 1 for the
geometric series.

Proof. Let L = 1/R where R is defined by the formula in the state-
ment of the theorem, and suppose that L �= 0,∞. (These two easy cases
are left as an exercise.) If |z| < R, choose ε > 0 so small that

(L+ ε)|z| = r < 1.

By the definition L, we have |an|1/n ≤ L+ ε for all large n, therefore

|an| |z|n ≤ {(L+ ε)|z|}n = rn.

Comparison with the geometric series
∑
rn shows that

∑
anz

n con-
verges.

If |z| > R, then a similar argument proves that there exists a sequence
of terms in the series whose absolute value goes to infinity, hence the
series diverges.

Remark. On the boundary of the disc of convergence, |z| = R, the sit-
uation is more delicate as one can have either convergence or divergence.
(See Exercise 19.)
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Further examples of power series that converge in the whole complex
plane are given by the standard trigonometric functions; these are
defined by

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
, and sin z =

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
,

and they agree with the usual cosine and sine of a real argument whenever
z ∈ R. A simple calculation exhibits a connection between these two
functions and the complex exponential, namely,

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

These are called the Euler formulas for the cosine and sine functions.

Power series provide a very important class of analytic functions that
are particularly simple to manipulate.

Theorem 2.6 The power series f(z) =
∑∞

n=0 anz
n defines a holomor-

phic function in its disc of convergence. The derivative of f is also a
power series obtained by differentiating term by term the series for f ,
that is,

f ′(z) =
∞∑

n=0

nanz
n−1.

Moreover, f ′ has the same radius of convergence as f .

Proof. The assertion about the radius of convergence of f ′ follows
from Hadamard’s formula. Indeed, limn→∞ n1/n = 1, and therefore

lim sup |an|1/n = lim sup |nan|1/n,

so that
∑
anz

n and
∑
nanz

n have the same radius of convergence, and
hence so do

∑
anz

n and
∑
nanz

n−1.
To prove the first assertion, we must show that the series

g(z) =
∞∑

n=0

nanz
n−1

gives the derivative of f . For that, let R denote the radius of convergence
of f , and suppose |z0| < r < R. Write

f(z) = SN (z) +EN (z) ,
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where

SN (z) =
N∑

n=0

anz
n and EN (z) =

∞∑
n=N+1

anz
n.

Then, if h is chosen so that |z0 + h| < r we have

f(z0 + h) − f(z0)
h

− g(z0) =
(
SN (z0 + h) − SN (z0)

h
− S′

N (z0)
)

+ (S′
N (z0) − g(z0)) +

(
EN (z0 + h) −EN (z0)

h

)
.

Since an − bn = (a− b)(an−1 + an−2b+ · · · + abn−2 + bn−1), we see that∣∣∣∣EN (z0 + h) −EN (z0)
h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣(z0 + h)n − zn

0

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|nrn−1,

where we have used the fact that |z0| < r and |z0 + h| < r. The expres-
sion on the right is the tail end of a convergent series, since g converges
absolutely on |z| < R. Therefore, given ε > 0 we can find N1 so that
N > N1 implies ∣∣∣∣EN (z0 + h) −EN (z0)

h

∣∣∣∣ < ε.

Also, since limN→∞ S′
N (z0) = g(z0), we can find N2 so that N > N2

implies

|S′
N (z0) − g(z0)| < ε.

If we fix N so that both N > N1 and N > N2 hold, then we can find
δ > 0 so that |h| < δ implies∣∣∣∣SN (z0 + h) − SN (z0)

h
− S′

N (z0)
∣∣∣∣ < ε ,

simply because the derivative of a polynomial is obtained by differenti-
ating it term by term. Therefore,∣∣∣∣f(z0 + h) − f(z0)

h
− g(z0)

∣∣∣∣ < 3ε

whenever |h| < δ, thereby concluding the proof of the theorem.

Successive applications of this theorem yield the following.
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Corollary 2.7 A power series is infinitely complex differentiable in its
disc of convergence, and the higher derivatives are also power series ob-
tained by termwise differentiation.

We have so far dealt only with power series centered at the origin.
More generally, a power series centered at z0 ∈ C is an expression of the
form

f(z) =
∞∑

n=0

an(z − z0)n.

The disc of convergence of f is now centered at z0 and its radius is still
given by Hadamard’s formula. In fact, if

g(z) =
∞∑

n=0

anz
n,

then f is simply obtained by translating g, namely f(z) = g(w) where
w = z − z0. As a consequence everything about g also holds for f after
we make the appropriate translation. In particular, by the chain rule,

f ′(z) = g′(w) =
∞∑

n=0

nan(z − z0)n−1.

A function f defined on an open set Ω is said to be analytic (or have
a power series expansion) at a point z0 ∈ Ω if there exists a power
series

∑
an(z − z0)n centered at z0, with positive radius of convergence,

such that

f(z) =
∞∑

n=0

an(z − z0)n for all z in a neighborhood of z0.

If f has a power series expansion at every point in Ω, we say that f is
analytic on Ω.

By Theorem 2.6, an analytic function on Ω is also holomorphic there.
A deep theorem which we prove in the next chapter says that the converse
is true: every holomorphic function is analytic. For that reason, we use
the terms holomorphic and analytic interchangeably.

3 Integration along curves

In the definition of a curve, we distinguish between the one-dimensional
geometric object in the plane (endowed with an orientation), and its
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parametrization, which is a mapping from a closed interval to C, that is
not uniquely determined.

A parametrized curve is a function z(t) which maps a closed interval
[a, b] ⊂ R to the complex plane. We shall impose regularity conditions
on the parametrization which are always verified in the situations that
occur in this book. We say that the parametrized curve is smooth if
z′(t) exists and is continuous on [a, b], and z′(t) �= 0 for t ∈ [a, b]. At the
points t = a and t = b, the quantities z′(a) and z′(b) are interpreted as
the one-sided limits

z′(a) = lim
h → 0
h > 0

z(a+ h) − z(a)
h

and z′(b) = lim
h → 0
h < 0

z(b+ h) − z(b)
h

.

In general, these quantities are called the right-hand derivative of z(t) at
a, and the left-hand derivative of z(t) at b, respectively.

Similarly we say that the parametrized curve is piecewise-smooth if
z is continuous on [a, b] and if there exist points

a = a0 < a1 < · · · < an = b ,

where z(t) is smooth in the intervals [ak, ak+1]. In particular, the right-
hand derivative at ak may differ from the left-hand derivative at ak for
k = 1, . . . , n− 1.

Two parametrizations,

z : [a, b] → C and z̃ : [c, d] → C,

are equivalent if there exists a continuously differentiable bijection
s 	→ t(s) from [c, d] to [a, b] so that t′(s) > 0 and

z̃(s) = z(t(s)).

The condition t′(s) > 0 says precisely that the orientation is preserved:
as s travels from c to d, then t(s) travels from a to b. The family of
all parametrizations that are equivalent to z(t) determines a smooth
curve γ ⊂ C, namely the image of [a, b] under z with the orientation
given by z as t travels from a to b. We can define a curve γ− obtained
from the curve γ by reversing the orientation (so that γ and γ− consist
of the same points in the plane). As a particular parametrization for γ−

we can take z− : [a, b] → R2 defined by

z−(t) = z(b+ a− t).
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It is also clear how to define a piecewise-smooth curve. The points
z(a) and z(b) are called the end-points of the curve and are independent
on the parametrization. Since γ carries an orientation, it is natural to
say that γ begins at z(a) and ends at z(b).

A smooth or piecewise-smooth curve is closed if z(a) = z(b) for any
of its parametrizations. Finally, a smooth or piecewise-smooth curve is
simple if it is not self-intersecting, that is, z(t) �= z(s) unless s = t. Of
course, if the curve is closed to begin with, then we say that it is simple
whenever z(t) �= z(s) unless s = t, or s = a and t = b.

Figure 3. A closed piecewise-smooth curve

For brevity, we shall call any piecewise-smooth curve a curve, since
these will be the objects we shall be primarily concerned with.

A basic example consists of a circle. Consider the circle Cr(z0) centered
at z0 and of radius r, which by definition is the set

Cr(z0) = {z ∈ C : |z − z0| = r}.

The positive orientation (counterclockwise) is the one that is given by
the standard parametrization

z(t) = z0 + reit, where t ∈ [0, 2π],

while the negative orientation (clockwise) is given by

z(t) = z0 + re−it, where t ∈ [0, 2π].

In the following chapters, we shall denote by C a general positively ori-
ented circle.

An important tool in the study of holomorphic functions is integration
of functions along curves. Loosely speaking, a key theorem in complex
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analysis says that if a function is holomorphic in the interior of a closed
curve γ, then ∫

γ

f(z) dz = 0,

and we shall turn our attention to a version of this theorem (called
Cauchy’s theorem) in the next chapter. Here we content ourselves with
the necessary definitions and properties of the integral.

Given a smooth curve γ in C parametrized by z : [a, b] → C, and f a
continuous function on γ, we define the integral of f along γ by∫

γ

f(z) dz =
∫ b

a

f(z(t))z′(t) dt.

In order for this definition to be meaningful, we must show that the
right-hand integral is independent of the parametrization chosen for γ.
Say that z̃ is an equivalent parametrization as above. Then the change
of variables formula and the chain rule imply that∫ b

a

f(z(t))z′(t) dt =
∫ d

c

f(z(t(s)))z′(t(s))t′(s) ds =
∫ d

c

f(z̃(s))z̃′(s) ds.

This proves that the integral of f over γ is well defined.
If γ is piecewise smooth, then the integral of f over γ is simply the

sum of the integrals of f over the smooth parts of γ, so if z(t) is a
piecewise-smooth parametrization as before, then

∫
γ

f(z) dz =
n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt.

By definition, the length of the smooth curve γ is

length(γ) =
∫ b

a

|z′(t)| dt.

Arguing as we just did, it is clear that this definition is also independent
of the parametrization. Also, if γ is only piecewise-smooth, then its
length is the sum of the lengths of its smooth parts.

Proposition 3.1 Integration of continuous functions over curves satis-
fies the following properties:



22 Chapter 1. PRELIMINARIES TO COMPLEX ANALYSIS

(i) It is linear, that is, if α, β ∈ C, then∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

(ii) If γ− is γ with the reverse orientation, then∫
γ

f(z) dz = −
∫

γ−
f(z) dz.

(iii) One has the inequality∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ ≤ sup

z∈γ
|f(z)| · length(γ).

Proof. The first property follows from the definition and the linearity
of the Riemann integral. The second property is left as an exercise. For
the third, note that∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ sup

t∈[a,b]

|f(z(t))|
∫ b

a

|z′(t)| dt ≤ sup
z∈γ

|f(z)| · length(γ)

as was to be shown.

As we have said, Cauchy’s theorem states that for appropriate closed
curves γ in an open set Ω on which f is holomorphic, then∫

γ

f(z) dz = 0.

The existence of primitives gives a first manifestation of this phenomenon.
Suppose f is a function on the open set Ω. A primitive for f on Ω is a
function F that is holomorphic on Ω and such that F ′(z) = f(z) for all
z ∈ Ω.

Theorem 3.2 If a continuous function f has a primitive F in Ω, and
γ is a curve in Ω that begins at w1 and ends at w2, then∫

γ

f(z) dz = F (w2) − F (w1).
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Proof. If γ is smooth, the proof is a simple application of the chain
rule and the fundamental theorem of calculus. Indeed, if z(t) : [a, b] → C

is a parametrization for γ, then z(a) = w1 and z(b) = w2, and we have∫
γ

f(z) dz =
∫ b

a

f(z(t))z′(t) dt

=
∫ b

a

F ′(z(t))z′(t) dt

=
∫ b

a

d

dt
F (z(t)) dt

= F (z(b)) − F (z(a)).

If γ is only piecewise-smooth, then arguing as we just did, we obtain
a telescopic sum, and we have∫

γ

f(z) dz =
n−1∑
k=0

F (z(ak+1)) − F (z(ak))

= F (z(an)) − F (z(a0))

= F (z(b)) − F (z(a)).

Corollary 3.3 If γ is a closed curve in an open set Ω, and f is contin-
uous and has a primitive in Ω, then∫

γ

f(z) dz = 0.

This is immediate since the end-points of a closed curve coincide.
For example, the function f(z) = 1/z does not have a primitive in the

open set C − {0}, since if C is the unit circle parametrized by z(t) = eit,
0 ≤ t ≤ 2π, we have∫

C

f(z) dz =
∫ 2π

0

ieit

eit
dt = 2πi �= 0.

In subsequent chapters, we shall see that this innocent calculation, which
provides an example of a function f and closed curve γ for which

∫
γ
f(z) dz �=

0, lies at the heart of the theory.

Corollary 3.4 If f is holomorphic in a region Ω and f ′ = 0, then f is
constant.
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Proof. Fix a point w0 ∈ Ω. It suffices to show that f(w) = f(w0) for
all w ∈ Ω.

Since Ω is connected, for any w ∈ Ω, there exists a curve γ which joins
w0 to w. Since f is clearly a primitive for f ′, we have∫

γ

f ′(z) dz = f(w) − f(w0).

By assumption, f ′ = 0 so the integral on the left is 0, and we conclude
that f(w) = f(w0) as desired.

Remark on notation. When convenient, we follow the practice of using
the notation f(z) = O(g(z)) to mean that there is a constant C > 0 such
that |f(z)| ≤ C|g(z)| for z in a neighborhood of the point in question.
In addition, we say f(z) = o(g(z)) when |f(z)/g(z)| → 0. We also write
f(z) ∼ g(z) to mean that f(z)/g(z) → 1.

4 Exercises

1. Describe geometrically the sets of points z in the complex plane defined by the
following relations:

(a) |z − z1| = |z − z2| where z1, z2 ∈ C.

(b) 1/z = z.

(c) Re(z) = 3.

(d) Re(z) > c, (resp., ≥ c) where c ∈ R.

(e) Re(az + b) > 0 where a, b ∈ C.

(f) |z| = Re(z) + 1.

(g) Im(z) = c with c ∈ R.

2. Let 〈·, ·〉 denote the usual inner product in R2. In other words, if Z = (x1, y1)
and W = (x2, y2), then

〈Z,W 〉 = x1x2 + y1y2.

Similarly, we may define a Hermitian inner product (·, ·) in C by

(z, w) = zw.
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The term Hermitian is used to describe the fact that (·, ·) is not symmetric, but
rather satisfies the relation

(z, w) = (w, z) for all z, w ∈ C.

Show that

〈z, w〉 =
1

2
[(z, w) + (w, z)] = Re(z, w),

where we use the usual identification z = x+ iy ∈ C with (x, y) ∈ R2.

3. With ω = seiϕ, where s ≥ 0 and ϕ ∈ R, solve the equation zn = ω in C where
n is a natural number. How many solutions are there?

4. Show that it is impossible to define a total ordering on C. In other words, one
cannot find a relation � between complex numbers so that:

(i) For any two complex numbers z, w, one and only one of the following is true:
z � w, w � z or z = w.

(ii) For all z1, z2, z3 ∈ C the relation z1 � z2 implies z1 + z3 � z2 + z3.

(iii) Moreover, for all z1, z2, z3 ∈ C with z3 � 0, then z1 � z2 implies z1z3 � z2z3.

[Hint: First check if i � 0 is possible.]

5. A set Ω is said to be pathwise connected if any two points in Ω can be
joined by a (piecewise-smooth) curve entirely contained in Ω. The purpose of this
exercise is to prove that an open set Ω is pathwise connected if and only if Ω is
connected.

(a) Suppose first that Ω is open and pathwise connected, and that it can be
written as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint non-empty open sets.
Choose two points w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω
joining w1 to w2. Consider a parametrization z : [0, 1] → Ω of this curve
with z(0) = w1 and z(1) = w2, and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1 for all 0 ≤ s < t}.

Arrive at a contradiction by considering the point z(t∗).

(b) Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and
let Ω1 ⊂ Ω denote the set of all points that can be joined to w by a curve
contained in Ω. Also, let Ω2 ⊂ Ω denote the set of all points that cannot be
joined to w by a curve in Ω. Prove that both Ω1 and Ω2 are open, disjoint
and their union is Ω. Finally, since Ω1 is non-empty (why?) conclude that
Ω = Ω1 as desired.
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The proof actually shows that the regularity and type of curves we used to define
pathwise connectedness can be relaxed without changing the equivalence between
the two definitions when Ω is open. For instance, we may take all curves to be
continuous, or simply polygonal lines.2

6. Let Ω be an open set in C and z ∈ Ω. The connected component (or simply
the component) of Ω containing z is the set Cz of all points w in Ω that can be
joined to z by a curve entirely contained in Ω.

(a) Check first that Cz is open and connected. Then, show that w ∈ Cz defines
an equivalence relation, that is: (i) z ∈ Cz, (ii) w ∈ Cz implies z ∈ Cw, and
(iii) if w ∈ Cz and z ∈ Cζ , then w ∈ Cζ .

Thus Ω is the union of all its connected components, and two components
are either disjoint or coincide.

(b) Show that Ω can have only countably many distinct connected components.

(c) Prove that if Ω is the complement of a compact set, then Ω has only one
unbounded component.

[Hint: For (b), one would otherwise obtain an uncountable number of disjoint open
balls. Now, each ball contains a point with rational coordinates. For (c), note that
the complement of a large disc containing the compact set is connected.]

7. The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
various applications in later chapters.

(a) Let z, w be two complex numbers such that zw 
= 1. Prove that∣∣∣∣ w − z

1 − wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z

1 − wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

[Hint: Why can one assume that z is real? It then suffices to prove that

(r − w)(r −w) ≤ (1 − rw)(1 − rw)

with equality for appropriate r and |w|.]
(b) Prove that for a fixed w in the unit disc D, the mapping

F : z �→ w − z

1 − wz

satisfies the following conditions:

2A polygonal line is a piecewise-smooth curve which consists of finitely many straight
line segments.
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(i) F maps the unit disc to itself (that is, F : D → D), and is holomorphic.

(ii) F interchanges 0 and w, namely F (0) = w and F (w) = 0.

(iii) |F (z)| = 1 if |z| = 1.

(iv) F : D → D is bijective. [Hint: Calculate F ◦ F .]

8. Suppose U and V are open sets in the complex plane. Prove that if f : U → V
and g : V → C are two functions that are differentiable (in the real sense, that is,
as functions of the two real variables x and y), and h = g ◦ f , then

∂h

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z

∂f

∂z

and

∂h

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z

∂f

∂z
.

This is the complex version of the chain rule.

9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

∂u

∂r
=

1

r

∂v

∂θ
and

1

r

∂u

∂θ
= −∂v

∂r
.

Use these equations to show that the logarithm function defined by

log z = log r + iθ where z = reiθ with −π < θ < π

is holomorphic in the region r > 0 and −π < θ < π.

10. Show that

4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z
=  ,

where  is the Laplacian

 =
∂2

∂x2
+

∂2

∂y2
.

11. Use Exercise 10 to prove that if f is holomorphic in the open set Ω, then the
real and imaginary parts of f are harmonic; that is, their Laplacian is zero.

12. Consider the function defined by

f(x+ iy) =
√

|x||y|, whenever x, y ∈ R.
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Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not
holomorphic at 0.

13. Suppose that f is holomorphic in an open set Ω. Prove that in any one of the
following cases:

(a) Re(f) is constant;

(b) Im(f) is constant;

(c) |f | is constant;

one can conclude that f is constant.

14. Suppose {an}N
n=1 and {bn}N

n=1 are two finite sequences of complex numbers.
Let Bk =

∑k
n=1 bn denote the partial sums of the series

∑
bn with the convention

B0 = 0. Prove the summation by parts formula

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

15. Abel’s theorem. Suppose
∑∞

n=1 an converges. Prove that

lim
r→1, r<1

∞∑
n=1

rnan =

∞∑
n=1

an.

[Hint: Sum by parts.] In other words, if a series converges, then it is Abel summable
with the same limit. For the precise definition of these terms, and more information
on summability methods, we refer the reader to Book I, Chapter 2.

16. Determine the radius of convergence of the series
∑∞

n=1 anz
n when:

(a) an = (log n)2

(b) an = n!

(c) an = n2

4n+3n

(d) an = (n!)3/(3n)! [Hint: Use Stirling’s formula, which says that

n! ∼ cnn+ 1
2 e−n for some c > 0..]

(e) Find the radius of convergence of the hypergeometric series

F (α, β, γ; z) = 1 +
∞∑

n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn.

Here α, β ∈ C and γ 
= 0,−1,−2, . . ..
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(f) Find the radius of convergence of the Bessel function of order r:

Jr(z) =
( z

2

)r
∞∑

n=0

(−1)n

n!(n+ r)!

( z
2

)2n

,

where r is a positive integer.

17. Show that if {an}∞n=0 is a sequence of non-zero complex numbers such that

lim
n→∞

|an+1|
|an| = L,

then

lim
n→∞

|an|1/n = L.

In particular, this exercise shows that when applicable, the ratio test can be used
to calculate the radius of convergence of a power series.

18. Let f be a power series centered at the origin. Prove that f has a power series
expansion around any point in its disc of convergence.

[Hint: Write z = z0 + (z − z0) and use the binomial expansion for zn.]

19. Prove the following:

(a) The power series
∑
nzn does not converge on any point of the unit circle.

(b) The power series
∑
zn/n2 converges at every point of the unit circle.

(c) The power series
∑
zn/n converges at every point of the unit circle except

z = 1. [Hint: Sum by parts.]

20. Expand (1 − z)−m in powers of z. Here m is a fixed positive integer. Also,
show that if

(1 − z)−m =
∞∑

n=0

anz
n,

then one obtains the following asymptotic relation for the coefficients:

an ∼ 1

(m− 1)!
nm−1 as n→ ∞.

21. Show that for |z| < 1, one has

z

1 − z2
+

z2

1 − z4
+ · · · + z2n

1 − z2n+1 + · · · =
z

1 − z
,
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and

z

1 + z
+

2z2

1 + z2
+ · · · + 2kz2k

1 + z2k
+ · · · =

z

1 − z
.

Justify any change in the order of summation.

[Hint: Use the dyadic expansion of an integer and the fact that 2k+1 − 1 = 1 +
2 + 22 + · · · + 2k.]

22. Let N = {1, 2, 3, . . .} denote the set of positive integers. A subset S ⊂ N is
said to be in arithmetic progression if

S = {a, a+ d, a+ 2d, a+ 3d, . . .}

where a, d ∈ N. Here d is called the step of S.
Show that N cannot be partitioned into a finite number of subsets that are in

arithmetic progression with distinct steps (except for the trivial case a = d = 1).

[Hint: Write
∑

n∈N
zn as a sum of terms of the type za

1−zd .]

23. Consider the function f defined on R by

f(x) =

{
0 if x ≤ 0 ,

e−1/x2
if x > 0.

Prove that f is indefinitely differentiable on R, and that f (n)(0) = 0 for all n ≥ 1.
Conclude that f does not have a converging power series expansion

∑∞
n=0 anx

n

for x near the origin.

24. Let γ be a smooth curve in C parametrized by z(t) : [a, b] → C. Let γ− denote
the curve with the same image as γ but with the reverse orientation. Prove that
for any continuous function f on γ∫

γ

f(z) dz = −
∫

γ−
f(z) dz.

25. The next three calculations provide some insight into Cauchy’s theorem, which
we treat in the next chapter.

(a) Evaluate the integrals ∫
γ

zn dz

for all integers n. Here γ is any circle centered at the origin with the positive
(counterclockwise) orientation.

(b) Same question as before, but with γ any circle not containing the origin.



4. Exercises 31

(c) Show that if |a| < r < |b|, then∫
γ

1

(z − a)(z − b)
dz =

2πi

a− b
,

where γ denotes the circle centered at the origin, of radius r, with the
positive orientation.

26. Suppose f is continuous in a region Ω. Prove that any two primitives of f (if
they exist) differ by a constant.



2 Cauchy’s Theorem and Its
Applications

The solution of a large number of problems can be
reduced, in the last analysis, to the evaluation of def-
inite integrals; thus mathematicians have been much
occupied with this task... However, among many re-
sults obtained, a number were initially discovered by
the aid of a type of induction based on the passage
from real to imaginary. Often passage of this kind
led directly to remarkable results. Nevertheless this
part of the theory, as has been observed by Laplace,
is subject to various difficulties...

After having reflected on this subject and brought
together various results mentioned above, I hope to
establish the passage from the real to the imaginary
based on a direct and rigorous analysis; my researches
have thus led me to the method which is the object of
this memoir...

A. L. Cauchy, 1827

In the previous chapter, we discussed several preliminary ideas in com-
plex analysis: open sets in C, holomorphic functions, and integration
along curves. The first remarkable result of the theory exhibits a deep
connection between these notions. Loosely stated, Cauchy’s theorem
says that if f is holomorphic in an open set Ω and γ ⊂ Ω is a closed
curve whose interior is also contained in Ω then

(1)
∫

γ

f(z) dz = 0.

Many results that follow, and in particular the calculus of residues, are
related in one way or another to this fact.

A precise and general formulation of Cauchy’s theorem requires defin-
ing unambiguously the “interior” of a curve, and this is not always an
easy task. At this early stage of our study, we shall make use of the
device of limiting ourselves to regions whose boundaries are curves that
are “toy contours.” As the name suggests, these are closed curves whose
visualization is so simple that the notion of their interior will be unam-
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biguous, and the proof of Cauchy’s theorem in this setting will be quite
direct. For many applications, it will suffice to restrict ourselves to these
types of curves. At a later stage, we take up the questions related to
more general curves, their interiors, and the extended form of Cauchy’s
theorem.

Our initial version of Cauchy’s theorem begins with the observation
that it suffices that f have a primitive in Ω, by Corollary 3.3 in Chapter 1.
The existence of such a primitive for toy contours will follow from a
theorem of Goursat (which is itself a simple special case)1 that asserts
that if f is holomorphic in an open set that contains a triangle T and its
interior, then ∫

T

f(z) dz = 0.

It is noteworthy that this simple case of Cauchy’s theorem suffices to
prove some of its more complicated versions. From there, we can prove
the existence of primitives in the interior of some simple regions, and
therefore prove Cauchy’s theorem in that setting. As a first application
of this viewpoint, we evaluate several real integrals by using appropriate
toy contours.

The above ideas also lead us to a central result of this chapter, the
Cauchy integral formula; this states that if f is holomorphic in an open
set containing a circle C and its interior, then for all z inside C,

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ.

Differentiation of this identity yields other integral formulas, and in
particular we obtain the regularity of holomorphic functions. This is
remarkable, since holomorphicity assumed only the existence of the first
derivative, and yet we obtain as a consequence the existence of derivatives
of all orders. (An analogous statement is decisively false in the case of
real variables!)

The theory developed up to that point already has a number of note-
worthy consequences:

• The property at the base of “analytic continuation,” namely that a
holomorphic function is determined by its restriction to any open
subset of its domain of definition. This is a consequence of the fact
that holomorphic functions have power series expansions.

1Goursat’s result came after Cauchy’s theorem, and its interest is the technical fact
that its proof requires only the existence of the complex derivative at each point, and not
its continuity. For the earlier proof, see Exercise 5.
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• Liouville’s theorem, which yields a quick proof of the fundamental
theorem of algebra.

• Morera’s theorem, which gives a simple integral characterization
of holomorphic functions, and shows that these functions are pre-
served under uniform limits.

1 Goursat’s theorem

Corollary 3.3 in the previous chapter says that if f has a primitive in an
open set Ω, then ∫

γ

f(z) dz = 0

for any closed curve γ in Ω. Conversely, if we can show that the above
relation holds for some types of curves γ, then a primitive will exist. Our
starting point is Goursat’s theorem, from which in effect we shall deduce
most of the other results in this chapter.

Theorem 1.1 If Ω is an open set in C, and T ⊂ Ω a triangle whose
interior is also contained in Ω, then∫

T

f(z) dz = 0

whenever f is holomorphic in Ω.

Proof. We call T (0) our original triangle (with a fixed orientation
which we choose to be positive), and let d(0) and p(0) denote the diame-
ter and perimeter of T (0), respectively. The first step in our construction
consists of bisecting each side of the triangle and connecting the mid-
points. This creates four new smaller triangles, denoted T

(1)
1 , T

(1)
2 , T

(1)
3 ,

and T
(1)
4 that are similar to the original triangle. The construction and

orientation of each triangle are illustrated in Figure 1. The orientation
is chosen to be consistent with that of the original triangle, and so after
cancellations arising from integrating over the same side in two opposite
directions, we have
(2)∫

T (0)
f(z) dz =

∫
T

(1)
1

f(z) dz +
∫

T
(1)
2

f(z) dz +
∫

T
(1)
3

f(z) dz +
∫

T
(1)
4

f(z) dz.

For some j we must have∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣∣
∫

T
(1)
j

f(z) dz

∣∣∣∣∣ ,
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T
(1)
2

T
(1)
1

T
(1)
3

T
(1)
4

T (0)

Figure 1. Bisection of T (0)

for otherwise (2) would be contradicted. We choose a triangle that
satisfies this inequality, and rename it T (1). Observe that if d(1) and
p(1) denote the diameter and perimeter of T (1), respectively, then d(1) =
(1/2)d(0) and p(1) = (1/2)p(0). We now repeat this process for the trian-
gle T (1), bisecting it into four smaller triangles. Continuing this process,
we obtain a sequence of triangles

T (0), T (1), . . . , T (n), . . .

with the properties that∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣

and

d(n) = 2−nd(0), p(n) = 2−np(0)

where d(n) and p(n) denote the diameter and perimeter of T (n), respec-
tively. We also denote by T (n) the solid closed triangle with boundary
T (n), and observe that our construction yields a sequence of nested com-
pact sets

T (0) ⊃ T (1) ⊃ · · · ⊃ T (n) ⊃ · · ·

whose diameter goes to 0. By Proposition 1.4 in Chapter 1, there exists
a unique point z0 that belongs to all the solid triangles T (n). Since f is
holomorphic at z0 we can write

f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0) ,

where ψ(z) → 0 as z → z0. Since the constant f(z0) and the linear func-
tion f ′(z0)(z − z0) have primitives, we can integrate the above equality
using Corollary 3.3 in the previous chapter, and obtain

(3)
∫

T (n)
f(z) dz =

∫
T (n)

ψ(z)(z − z0) dz.
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Now z0 belongs to the closure of the solid triangle T (n) and z to its
boundary, so we must have |z − z0| ≤ d(n), and using (3) we get, by (iii)
in Proposition 3.1 of the previous chapter, the estimate∣∣∣∣∫

T (n)

f(z) dz
∣∣∣∣ ≤ εnd

(n)p(n),

where εn = supz∈T (n) |ψ(z)| → 0 as n→ ∞. Therefore∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣ ≤ εn4−nd(0)p(0) ,

which yields our final estimate∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣ ≤ εnd

(0)p(0).

Letting n→ ∞ concludes the proof since εn → 0.

Corollary 1.2 If f is holomorphic in an open set Ω that contains a
rectangle R and its interior, then∫

R

f(z) dz = 0.

This is immediate since we first choose an orientation as in Figure 2
and note that ∫

R

f(z) dz =
∫

T1

f(z) dz +
∫

T2

f(z) dz.

T2

T1

R

Figure 2. A rectangle as the union of two triangles
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2 Local existence of primitives and Cauchy’s theorem in

a disc

We first prove the existence of primitives in a disc as a consequence of
Goursat’s theorem.

Theorem 2.1 A holomorphic function in an open disc has a primitive
in that disc.

Proof. After a translation, we may assume without loss of generality
that the disc, say D, is centered at the origin. Given a point z ∈ D,
consider the piecewise-smooth curve that joins 0 to z first by moving in
the horizontal direction from 0 to z̃ where z̃ = Re(z), and then in the
vertical direction from z̃ to z. We choose the orientation from 0 to z,
and denote this polygonal line (which consists of at most two segments)
by γz , as shown on Figure 3.

γz

0 z̃

z

Figure 3. The polygonal line γz

Define

F (z) =
∫

γz

f(w) dw.

The choice of γz gives an unambiguous definition of the function F (z).
We contend that F is holomorphic in D and F ′(z) = f(z). To prove this,
fix z ∈ D and let h ∈ C be so small that z + h also belongs to the disc.
Now consider the difference

F (z + h) − F (z) =
∫

γz+h

f(w) dw −
∫

γz

f(w) dw.
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The function f is first integrated along γz+h with the original orientation,
and then along γz with the reverse orientation (because of the minus
sign in front of the second integral). This corresponds to (a) in Figure 4.
Since we integrate f over the line segment starting at the origin in two
opposite directions, it cancels, leaving us with the contour in (b). Then,
we complete the square and triangle as shown in (c), so that after an
application of Goursat’s theorem for triangles and rectangles we are left
with the line segment from z to z + h as given in (d).

(a) (b) (c) (d)

0

z + h

z

z + h

z

Figure 4. Relation between the polygonal lines γz and γz+h

Hence the above cancellations yield

F (z + h) − F (z) =
∫

η

f(w) dw

where η is the straight line segment from z to z + h. Since f is continuous
at z we can write

f(w) = f(z) + ψ(w)

where ψ(w) → 0 as w → z. Therefore
(4)

F (z + h) − F (z) =
∫

η

f(z) dw +
∫

η

ψ(w) dw = f(z)
∫

η

dw +
∫

η

ψ(w) dw.

On the one hand, the constant 1 has w as a primitive, so the first integral
is simply h by an application of Theorem 3.2 in Chapter 1. On the other
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hand, we have the following estimate:∣∣∣∣∫
η

ψ(w) dw
∣∣∣∣ ≤ sup

w∈η
|ψ(w)| |h|.

Since the supremum above goes to 0 as h tends to 0, we conclude from
equation (4) that

lim
h→0

F (z + h) − F (z)
h

= f(z) ,

thereby proving that F is a primitive for f on the disc.

This theorem says that locally, every holomorphic function has a prim-
itive. It is crucial to realize, however, that the theorem is true not only
for arbitrary discs, but also for other sets as well. We shall return to this
point shortly in our discussion of “toy contours.”

Theorem 2.2 (Cauchy’s theorem for a disc) If f is holomorphic in
a disc, then ∫

γ

f(z) dz = 0

for any closed curve γ in that disc.

Proof. Since f has a primitive, we can apply Corollary 3.3 of Chap-
ter 1.

Corollary 2.3 Suppose f is holomorphic in an open set containing the
circle C and its interior. Then∫

C

f(z) dz = 0.

Proof. Let D be the disc with boundary circle C. Then there exists
a slightly larger disc D′ which contains D and so that f is holomorphic
on D′. We may now apply Cauchy’s theorem in D′ to conclude that∫

C
f(z) dz = 0.

In fact, the proofs of the theorem and its corollary apply whenever we
can define without ambiguity the “interior” of a contour, and construct
appropriate polygonal paths in an open neighborhood of that contour
and its interior. In the case of the circle, whose interior is the disc, there
was no problem since the geometry of the disc made it simple to travel
horizontally and vertically inside it.
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The following definition is loosely stated, although its applications
will be clear and unambiguous. We call a toy contour any closed curve
where the notion of interior is obvious, and a construction similar to
that in Theorem 2.1 is possible in a neighborhood of the curve and its
interior. Its positive orientation is that for which the interior is to the left
as we travel along the toy contour. This is consistent with the definition
of the positive orientation of a circle. For example, circles, triangles,
and rectangles are toy contours, since in each case we can modify (and
actually copy) the argument given previously.

Another important example of a toy contour is the “keyhole” Γ (illus-
trated in Figure 5), which we shall put to use in the proof of the Cauchy
integral formula. It consists of two almost complete circles, one large

Γint

Γ

Figure 5. The keyhole contour

and one small, connected by a narrow corridor. The interior of Γ, which
we denote by Γint, is clearly that region enclosed by the curve, and can
be given precise meaning with enough work. We fix a point z0 in that
interior. If f is holomorphic in a neighborhood of Γ and its interior,
then it is holomorphic in the inside of a slightly larger keyhole, say Λ,
whose interior Λint contains Γ ∪ Γint. If z ∈ Λint, let γz denote any curve
contained inside Λint connecting z0 to z, and which consists of finitely
many horizontal or vertical segments (as in Figure 6). If ηz is any other
such curve, the rectangle version of Goursat’s theorem (Corollary 1.2)
implies that ∫

γz

f(w) dw =
∫

ηz

f(w) dw ,

and we may therefore define F unambiguously in Λint.
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Λ

z0

γz

z

Λint

Figure 6. A curve γz

Arguing as above allows us to show that F is a primitive of f in Λint

and therefore
∫
Γ
f(z) dz = 0.

The important point is that for a toy contour γ we easily have that∫
γ

f(z) dz = 0 ,

whenever f is holomorphic in an open set that contains the contour γ
and its interior.

Other examples of toy contours which we shall encounter in applica-
tions and for which Cauchy’s theorem and its corollary also hold are
given in Figure 7.

While Cauchy’s theorem for toy contours is sufficient for most applica-
tions we deal with, the question still remains as to what happens for more
general curves. We take up this matter in Appendix B, where we prove
Jordan’s theorem for piecewise-smooth curves. This theorem states that
a simple closed piecewise-smooth curve has a well defined interior that
is “simply connected.” As a consequence, we find that even in this more
general situation, Cauchy’s theorem holds.

3 Evaluation of some integrals

Here we take up the idea that originally motivated Cauchy. We shall
show by several examples how some integrals may be evaluated by the
use of his theorem. A more systematic approach, in terms of the calculus
of residues, may be found in the next chapter.
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The multiple keyhole

Semicircle

Sector Parallelogram

Rectangular keyhole

Indented semicircle

Figure 7. Examples of toy contours

Example 1. We show that if ξ ∈ R, then

(5) e−πξ2
=
∫ ∞

−∞
e−πx2

e−2πixξ dx.

This gives a new proof of the fact that e−πx2
is its own Fourier transform,

a fact we proved in Theorem 1.4 of Chapter 5 in Book I.
If ξ = 0, the formula is precisely the known integral2

1 =
∫ ∞

−∞
e−πx2

dx.

Now suppose that ξ > 0, and consider the function f(z) = e−πz2
, which

is entire, and in particular holomorphic in the interior of the toy contour
γR depicted in Figure 8.

2An alternate derivation follows from the fact that Γ(1/2) =
√
π, where Γ is the gamma

function in Chapter 6.
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R

R + iξ

−R

−R+ iξ

0

Figure 8. The contour γR in Example 1

The contour γR consists of a rectangle with vertices R,R+ iξ,−R+
iξ,−R and the positive counterclockwise orientation. By Cauchy’s the-
orem,

(6)
∫

γR

f(z) dz = 0.

The integral over the real segment is simply∫ R

−R

e−πx2
dx ,

which converges to 1 as R→ ∞. The integral on the vertical side on the
right is

I(R) =
∫ ξ

0

f(R + iy)i dy =
∫ ξ

0

e−π(R2+2iRy−y2)i dy.

This integral goes to 0 as R→ ∞ since ξ is fixed and we may estimate
it by

|I(R)| ≤ Ce−πR2
.

Similarly, the integral over the vertical segment on the left also goes to 0
as R→ ∞ for the same reasons. Finally, the integral over the horizontal
segment on top is∫ −R

R

e−π(x+iξ)2 dx = −eπξ2
∫ R

−R

e−πx2
e−2πixξ dx.

Therefore, we find in the limit as R→ ∞ that (6) gives

0 = 1 − eπξ2
∫ ∞

−∞
e−πx2

e−2πixξ dx,
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and our desired formula is established. In the case ξ < 0, we then consider
the symmetric rectangle, in the lower half-plane.

The technique of shifting the contour of integration, which was used
in the previous example, has many other applications. Note that the
original integral (5) is taken over the real line, which by an application
of Cauchy’s theorem is then shifted upwards or downwards (depending
on the sign of ξ) in the complex plane.

Example 2. Another classical example is∫ ∞

0

1 − cosx
x2

dx =
π

2
.

Here we consider the function f(z) = (1 − eiz)/z2, and we integrate over
the indented semicircle in the upper half-plane positioned on the x-axis,
as shown in Figure 9.

R

γ+
R

−R

γ+
ε

ε−ε

Figure 9. The indented semicircle of Example 2

If we denote by γ+
ε and γ+

R the semicircles of radii ε and R with negative
and positive orientations respectively, Cauchy’s theorem gives∫ −ε

−R

1 − eix

x2
dx+

∫
γ+

ε

1 − eiz

z2
dz +

∫ R

ε

1 − eix

x2
dx+

∫
γ+

R

1 − eiz

z2
dz = 0.

First we let R→ ∞ and observe that∣∣∣∣1 − eiz

z2

∣∣∣∣ ≤ 2
|z|2 ,

so the integral over γ+
R goes to zero. Therefore∫

|x|≥ε

1 − eix

x2
dx = −

∫
γ+

ε

1 − eiz

z2
dz.
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Next, note that

f(z) =
−iz
z2

+E(z)

where E(z) is bounded as z → 0, while on γ+
ε we have z = εeiθ and

dz = iεeiθdθ. Thus∫
γ+

ε

1 − eiz

z2
dz →

∫ 0

π

(−ii) dθ = −π as ε→ 0.

Taking real parts then yields∫ ∞

−∞

1 − cosx
x2

dx = π.

Since the integrand is even, the desired formula is proved.

4 Cauchy’s integral formulas

Representation formulas, and in particular integral representation formu-
las, play an important role in mathematics, since they allow us to recover
a function on a large set from its behavior on a smaller set. For example,
we saw in Book I that a solution of the steady-state heat equation in the
disc was completely determined by its boundary values on the circle via
a convolution with the Poisson kernel

(7) u(r, θ) =
1
2π

∫ 2π

0

Pr(θ − ϕ)u(1, ϕ) dϕ.

In the case of holomorphic functions, the situation is analogous, which
is not surprising since the real and imaginary parts of a holomorphic
function are harmonic.3 Here, we will prove an integral representation
formula in a manner that is independent of the theory of harmonic func-
tions. In fact, it is also possible to recover the Poisson integral formula (7)
as a consequence of the next theorem (see Exercises 11 and 12).

Theorem 4.1 Suppose f is holomorphic in an open set that contains
the closure of a disc D. If C denotes the boundary circle of this disc with
the positive orientation, then

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ for any point z ∈ D.

3This fact is an immediate consequence of the Cauchy-Riemann equations. We refer
the reader to Exercise 11 in Chapter 1.
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Proof. Fix z ∈ D and consider the “keyhole” Γδ,ε which omits the
point z as shown in Figure 10.

Γδ,ε

z C

Figure 10. The keyhole Γδ,ε

Here δ is the width of the corridor, and ε the radius of the small circle
centered at z. Since the function F (ζ) = f(ζ)/(ζ − z) is holomorphic
away from the point ζ = z, we have

∫
Γδ,ε

F (ζ) dζ = 0

by Cauchy’s theorem for the chosen toy contour. Now we make the
corridor narrower by letting δ tend to 0, and use the continuity of F to
see that in the limit, the integrals over the two sides of the corridor cancel
out. The remaining part consists of two curves, the large boundary circle
C with the positive orientation, and a small circle Cε centered at z of
radius ε and oriented negatively, that is, clockwise. To see what happens
to the integral over the small circle we write

(8) F (ζ) =
f(ζ) − f(z)

ζ − z
+
f(z)
ζ − z

and note that since f is holomorphic the first term on the right-hand
side of (8) is bounded so that its integral over Cε goes to 0 as ε→ 0. To
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conclude the proof, it suffices to observe that∫
Cε

f(z)
ζ − z

dζ = f(z)
∫

Cε

dζ

ζ − z

= −f(z)
∫ 2π

0

εie−it

εe−it
dt

= −f(z)2πi ,

so that in the limit we find

0 =
∫

C

f(ζ)
ζ − z

dζ − 2πif(z) ,

as was to be shown.

Remarks. Our earlier discussion of toy contours provides simple ex-
tensions of the Cauchy integral formula; for instance, if f is holomorphic
in an open set that contains a (positively oriented) rectangle R and its
interior, then

f(z) =
1

2πi

∫
R

f(ζ)
ζ − z

dζ ,

whenever z belongs to the interior ofR. To establish this result, it suffices
to repeat the proof of Theorem 4.1 replacing the “circular” keyhole by a
“rectangular” keyhole.

It should also be noted that the above integral vanishes when z is
outside R, since in this case F (ζ) = f(ζ)/(ζ − z) is holomorphic inside
R. Of course, a similar result also holds for the circle or any other toy
contour.

As a corollary to the Cauchy integral formula, we arrive at a second
remarkable fact about holomorphic functions, namely their regularity.
We also obtain further integral formulas expressing the derivatives of f
inside the disc in terms of the values of f on the boundary.

Corollary 4.2 If f is holomorphic in an open set Ω, then f has infinitely
many complex derivatives in Ω. Moreover, if C ⊂ Ω is a circle whose
interior is also contained in Ω, then

f (n)(z) =
n!
2πi

∫
C

f(ζ)
(ζ − z)n+1

dζ

for all z in the interior of C.
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We recall that, as in the above theorem, we take the circle C to have
positive orientation.

Proof. The proof is by induction on n, the case n = 0 being simply
the Cauchy integral formula. Suppose that f has up to n− 1 complex
derivatives and that

f (n−1)(z) =
(n− 1)!

2πi

∫
C

f(ζ)
(ζ − z)n

dζ.

Now for h small, the difference quotient for f (n−1) takes the form

(9)
f (n−1)(z + h) − f (n−1)(z)

h
=

(n− 1)!
2πi

∫
C

f(ζ)
1
h

[
1

(ζ − z − h)n
− 1

(ζ − z)n

]
dζ.

We now recall that

An − Bn = (A−B)[An−1 +An−2B + · · · +ABn−2 +Bn−1].

With A = 1/(ζ − z − h) and B = 1/(ζ − z), we see that the term in
brackets in equation (9) is equal to

h

(ζ − z − h)(ζ − z)
[An−1 +An−2B + · · · +ABn−2 +Bn−1].

But observe that if h is small, then z + h and z stay at a finite distance
from the boundary circle C, so in the limit as h tends to 0, we find that
the quotient converges to

(n− 1)!
2πi

∫
C

f(ζ)
[

1
(ζ − z)2

][
n

(ζ − z)n−1

]
dζ =

n!
2πi

∫
C

f(ζ)
(ζ − z)n+1

dζ ,

which completes the induction argument and proves the theorem.

From now on, we call the formulas of Theorem 4.1 and Corollary 4.2
the Cauchy integral formulas.

Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open
set that contains the closure of a disc D centered at z0 and of radius R,
then

|f (n)(z0)| ≤
n!‖f‖C

Rn
,

where ‖f‖C = supz∈C |f(z)| denotes the supremum of |f | on the boundary
circle C.
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Proof. Applying the Cauchy integral formula for f (n)(z0), we obtain

|f (n)(z0)| =
∣∣∣∣ n!
2πi

∫
C

f(ζ)
(ζ − z0)n+1

dζ

∣∣∣∣
=
n!
2π

∣∣∣∣∫ 2π

0

f(z0 +Reiθ)
(Reiθ)n+1

Rieiθ dθ

∣∣∣∣
≤ n!

2π
‖f‖C

Rn
2π.

Another striking consequence of the Cauchy integral formula is its
connection with power series. In Chapter 1, we proved that a power series
is holomorphic in the interior of its disc of convergence, and promised a
proof of a converse, which is the content of the next theorem.

Theorem 4.4 Suppose f is holomorphic in an open set Ω. If D is a
disc centered at z0 and whose closure is contained in Ω, then f has a
power series expansion at z0

f(z) =
∞∑

n=0

an(z − z0)n

for all z ∈ D, and the coefficients are given by

an =
f (n)(z0)
n!

for all n ≥ 0.

Proof. Fix z ∈ D. By the Cauchy integral formula, we have

(10) f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ ,

where C denotes the boundary of the disc and z ∈ D. The idea is to
write

(11)
1

ζ − z
=

1
ζ − z0 − (z − z0)

=
1

ζ − z0

1

1 −
(

z−z0
ζ−z0

) ,
and use the geometric series expansion. Since ζ ∈ C and z ∈ D is fixed,
there exists 0 < r < 1 such that∣∣∣∣z − z0

ζ − z0

∣∣∣∣ < r,
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therefore

(12)
1

1 −
(

z−z0
ζ−z0

) =
∞∑

n=0

(
z − z0
ζ − z0

)n

,

where the series converges uniformly for ζ ∈ C. This allows us to inter-
change the infinite sum with the integral when we combine (10), (11),
and (12), thereby obtaining

f(z) =
∞∑

n=0

(
1

2πi

∫
C

f(ζ)
(ζ − z0)n+1

dζ

)
· (z − z0)n.

This proves the power series expansion; further the use of the Cauchy in-
tegral formulas for the derivatives (or simply differentiation of the series)
proves the formula for an.

Observe that since power series define indefinitely (complex) differ-
entiable functions, the theorem gives another proof that a holomorphic
function is automatically indefinitely differentiable.

Another important observation is that the power series expansion of
f centered at z0 converges in any disc, no matter how large, as long
as its closure is contained in Ω. In particular, if f is entire (that is,
holomorphic on all of C), the theorem implies that f has a power series
expansion around 0, say f(z) =

∑∞
n=0 anz

n, that converges in all of C.

Corollary 4.5 (Liouville’s theorem) If f is entire and bounded, then
f is constant.

Proof. It suffices to prove that f ′ = 0, since C is connected, and we
may then apply Corollary 3.4 in Chapter 1.

For each z0 ∈ C and all R > 0, the Cauchy inequalities yield

|f ′(z0)| ≤
B

R

where B is a bound for f . Letting R→ ∞ gives the desired result.

As an application of our work so far, we can give an elegant proof of
the fundamental theorem of algebra.

Corollary 4.6 Every non-constant polynomial P (z) = anz
n + · · · + a0

with complex coefficients has a root in C.

Proof. If P has no roots, then 1/P (z) is a bounded holomorphic
function. To see this, we can of course assume that an �= 0, and write

P (z)
zn

= an +
(an−1

z
+ · · · + a0

zn

)



4. Cauchy’s integral formulas 51

whenever z �= 0. Since each term in the parentheses goes to 0 as |z| → ∞
we conclude that there exists R > 0 so that if c = |an|/2, then

|P (z)| ≥ c|z|n whenever |z| > R.

In particular, P is bounded from below when |z| > R. Since P is contin-
uous and has no roots in the disc |z| ≤ R, it is bounded from below in
that disc as well, thereby proving our claim.

By Liouville’s theorem we then conclude that 1/P is constant. This
contradicts our assumption that P is non-constant and proves the corol-
lary.

Corollary 4.7 Every polynomial P (z) = anz
n + · · · + a0 of degree n ≥

1 has precisely n roots in C. If these roots are denoted by w1, . . . , wn,
then P can be factored as

P (z) = an(z − w1)(z − w2) · · · (z − wn).

Proof. By the previous result P has a root, say w1. Then, writing
z = (z − w1) + w1, inserting this expression for z in P , and using the
binomial formula we get

P (z) = bn(z − w1)n + · · · + b1(z − w1) + b0,

where b0, . . . , bn−1 are new coefficients, and bn = an. Since P (w1) = 0,
we find that b0 = 0, therefore

P (z) = (z − w1)
[
bn(z − w1)n−1 + · · · + b1

]
= (z − w1)Q(z),

where Q is a polynomial of degree n− 1. By induction on the degree of
the polynomial, we conclude that P (z) has n roots and can be expressed
as

P (z) = c(z − w1)(z − w2) · · · (z − wn)

for some c ∈ C. Expanding the right-hand side, we realize that the coef-
ficient of zn is c and therefore c = an as claimed.

Finally, we end this section with a discussion of analytic continuation
(the third of the “miracles” we mentioned in the introduction). It states
that the “genetic code” of a holomorphic function is determined (that
is, the function is fixed) if we know its values on appropriate arbitrarily
small subsets. Note that in the theorem below, Ω is assumed connected.
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Theorem 4.8 Suppose f is a holomorphic function in a region Ω that
vanishes on a sequence of distinct points with a limit point in Ω. Then
f is identically 0.

In other words, if the zeros of a holomorphic function f in the con-
nected open set Ω accumulate in Ω, then f = 0.

Proof. Suppose that z0 ∈ Ω is a limit point for the sequence {wk}∞k=1

and that f(wk) = 0. First, we show that f is identically zero in a small
disc containing z0. For that, we choose a disc D centered at z0 and
contained in Ω, and consider the power series expansion of f in that disc

f(z) =
∞∑

n=0

an(z − z0)n.

If f is not identically zero, there exists a smallest integer m such that
am �= 0. But then we can write

f(z) = am(z − z0)m(1 + g(z − z0)),

where g(z − z0) converges to 0 as z → z0. Taking z = wk �= z0 for a se-
quence of points converging to z0, we get a contradiction since
am(wk − z0)m �= 0 and 1 + g(wk − z0) �= 0, but f(wk) = 0.

We conclude the proof using the fact that Ω is connected. Let U
denote the interior of the set of points where f(z) = 0. Then U is open
by definition and non-empty by the argument just given. The set U is
also closed since if zn ∈ U and zn → z, then f(z) = 0 by continuity, and
f vanishes in a neighborhood of z by the argument above. Hence z ∈ U .
Now if we let V denote the complement of U in Ω, we conclude that U
and V are both open, disjoint, and

Ω = U ∪ V.

Since Ω is connected we conclude that either U or V is empty. (Here we
use one of the two equivalent definitions of connectedness discussed in
Chapter 1.) Since z0 ∈ U , we find that U = Ω and the proof is complete.

An immediate consequence of the theorem is the following.

Corollary 4.9 Suppose f and g are holomorphic in a region Ω and
f(z) = g(z) for all z in some non-empty open subset of Ω (or more gen-
erally for z in some sequence of distinct points with limit point in Ω).
Then f(z) = g(z) throughout Ω.
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Suppose we are given a pair of functions f and F analytic in regions
Ω and Ω′, respectively, with Ω ⊂ Ω′. If the two functions agree on the
smaller set Ω, we say that F is an analytic continuation of f into the
region Ω′. The corollary then guarantees that there can be only one such
analytic continuation, since F is uniquely determined by f .

5 Further applications

We gather in this section various consequences of the results proved so
far.

5.1 Morera’s theorem

A direct application of what was proved here is a converse of Cauchy’s
theorem.

Theorem 5.1 Suppose f is a continuous function in the open disc D
such that for any triangle T contained in D∫

T

f(z) dz = 0,

then f is holomorphic.

Proof. By the proof of Theorem 2.1 the function f has a primitive F
in D that satisfies F ′ = f . By the regularity theorem, we know that F
is indefinitely (and hence twice) complex differentiable, and therefore f
is holomorphic.

5.2 Sequences of holomorphic functions

Theorem 5.2 If {fn}∞n=1 is a sequence of holomorphic functions that
converges uniformly to a function f in every compact subset of Ω, then
f is holomorphic in Ω.

Proof. Let D be any disc whose closure is contained in Ω and T
any triangle in that disc. Then, since each fn is holomorphic, Goursat’s
theorem implies ∫

T

fn(z) dz = 0 for all n.

By assumption fn → f uniformly in the closure of D, so f is continuous
and ∫

T

fn(z) dz →
∫

T

f(z) dz.
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As a result, we find
∫

T
f(z) dz = 0, and by Morera’s theorem, we conclude

that f is holomorphic in D. Since this conclusion is true for every D
whose closure is contained in Ω, we find that f is holomorphic in all of
Ω.

This is a striking result that is obviously not true in the case of real
variables: the uniform limit of continuously differentiable functions need
not be differentiable. For example, we know that every continuous func-
tion on [0, 1] can be approximated uniformly by polynomials, by Weier-
strass’s theorem (see Chapter 5, Book I), yet not every continuous func-
tion is differentiable.

We can go one step further and deduce convergence theorems for the
sequence of derivatives. Recall that if f is a power series with radius
of convergence R, then f ′ can be obtained by differentiating term by
term the series for f , and moreover f ′ has radius of convergence R. (See
Theorem 2.6 in Chapter 1.) This implies in particular that if Sn are the
partial sums of f , then S′

n converges uniformly to f ′ on every compact
subset of the disc of convergence of f . The next theorem generalizes this
fact.

Theorem 5.3 Under the hypotheses of the previous theorem, the se-
quence of derivatives {f ′n}∞n=1 converges uniformly to f ′ on every com-
pact subset of Ω.

Proof. We may assume without loss of generality that the sequence of
functions in the theorem converges uniformly on all of Ω. Given δ > 0,
let Ωδ denote the subset of Ω defined by

Ωδ = {z ∈ Ω : Dδ(z) ⊂ Ω}.

In other words, Ωδ consists of all points in Ω which are at distance > δ
from its boundary. To prove the theorem, it suffices to show that {f ′n}
converges uniformly to f ′ on Ωδ for each δ. This is achieved by proving
the following inequality:

(13) sup
z∈Ωδ

|F ′(z)| ≤ 1
δ

sup
ζ∈Ω

|F (ζ)|

whenever F is holomorphic in Ω, since it can then be applied to
F = fn − f to prove the desired fact. The inequality (13) follows at
once from the Cauchy integral formula and the definition of Ωδ, since for
every z ∈ Ωδ the closure of Dδ(z) is contained in Ω and

F ′(z) =
1

2πi

∫
Cδ(z)

F (ζ)
(ζ − z)2

dζ.
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Hence,

|F ′(z)| ≤ 1
2π

∫
Cδ(z)

|F (ζ)|
|ζ − z|2 |dζ|

≤ 1
2π

sup
ζ∈Ω

|F (ζ)| 1
δ2

2πδ

=
1
δ

sup
ζ∈Ω

|F (ζ)| ,

as was to be shown.

Of course, there is nothing special about the first derivative, and in
fact under the hypotheses of the last theorem, we may conclude (arguing
as above) that for every k ≥ 0 the sequence of kth derivatives {f (k)

n }∞n=1

converges uniformly to f (k) on every compact subset of Ω.

In practice, one often uses Theorem 5.2 to construct holomorphic func-
tions (say, with a prescribed property) as a series

(14) F (z) =
∞∑

n=1

fn(z).

Indeed, if each fn is holomorphic in a given region Ω of the complex
plane, and the series converges uniformly in compact subsets of Ω, then
Theorem 5.2 guarantees that F is also holomorphic in Ω. For instance,
various special functions are often expressed in terms of a converging
series like (14). A specific example is the Riemann zeta function discussed
in Chapter 6.

We now turn to a variant of this idea, which consists of functions
defined in terms of integrals.

5.3 Holomorphic functions defined in terms of integrals

As we shall see later in this book, a number of other special functions
are defined in terms of integrals of the type

f(z) =
∫ b

a

F (z, s) ds,

or as limits of such integrals. Here, the function F is holomorphic in the
first argument, and continuous in the second. The integral is taken in
the sense of Riemann integration over the bounded interval [a, b]. The
problem then is to establish that f is holomorphic.
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In the next theorem, we impose a sufficient condition on F , often
satisfied in practice, that easily implies that f is holomorphic.

After a simple linear change of variables, we may assume that a = 0
and b = 1.

Theorem 5.4 Let F (z, s) be defined for (z, s) ∈ Ω × [0, 1] where Ω is an
open set in C. Suppose F satisfies the following properties:

(i) F (z, s) is holomorphic in z for each s.

(ii) F is continuous on Ω × [0, 1].

Then the function f defined on Ω by

f(z) =
∫ 1

0

F (z, s) ds

is holomorphic.

The second condition says that F is jointly continuous in both argu-
ments.

To prove this result, it suffices to prove that f is holomorphic in any
disc D contained in Ω, and by Morera’s theorem this could be achieved
by showing that for any triangle T contained in D we have∫

T

∫ 1

0

F (z, s) ds dz = 0.

Interchanging the order of integration, and using property (i) would then
yield the desired result. We can, however, get around the issue of justi-
fying the change in the order of integration by arguing differently. The
idea is to interpret the integral as a “uniform” limit of Riemann sums,
and then apply the results of the previous section.

Proof. For each n ≥ 1, we consider the Riemann sum

fn(z) = (1/n)
n∑

k=1

F (z, k/n).

Then fn is holomorphic in all of Ω by property (i), and we claim that
on any disc D whose closure is contained in Ω, the sequence {fn}∞n=1

converges uniformly to f . To see this, we recall that a continuous function
on a compact set is uniformly continuous, so if ε > 0 there exists δ > 0
such that

sup
z∈D

|F (z, s1) − F (z, s2)| < ε whenever |s1 − s2| < δ.
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Then, if n > 1/δ, and z ∈ D we have

|fn(z)− f(z)| =

∣∣∣∣∣
n∑

k=1

∫ k/n

(k−1)/n

F (z, k/n)− F (z, s) ds

∣∣∣∣∣
≤

n∑
k=1

∫ k/n

(k−1)/n

|F (z, k/n)− F (z, s)| ds

<

n∑
k=1

ε

n

< ε.

This proves the claim, and by Theorem 5.2 we conclude that f is holo-
morphic in D. As a consequence, f is holomorphic in Ω, as was to be
shown.

5.4 Schwarz reflection principle

In real analysis, there are various situations where one wishes to extend
a function from a given set to a larger one. Several techniques exist
that provide extensions for continuous functions, and more generally for
functions with varying degrees of smoothness. Of course, the difficulty of
the technique increases as we impose more conditions on the extension.

The situation is very different for holomorphic functions. Not only are
these functions indefinitely differentiable in their domain of definition,
but they also have additional characteristically rigid properties, which
make them difficult to mold. For example, there exist holomorphic func-
tions in a disc which are continuous on the closure of the disc, but which
cannot be continued (analytically) into any region larger than the disc.
(This phenomenon is discussed in Problem 1.) Another fact we have
seen above is that holomorphic functions must be identically zero if they
vanish on small open sets (or even, for example, a non-zero line segment).

It turns out that the theory developed in this chapter provides a simple
extension phenomenon that is very useful in applications: the Schwarz
reflection principle. The proof consists of two parts. First we define the
extension, and then check that the resulting function is still holomorphic.
We begin with this second point.

Let Ω be an open subset of C that is symmetric with respect to the
real line, that is

z ∈ Ω if and only if z ∈ Ω.
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Let Ω+ denote the part of Ω that lies in the upper half-plane and Ω−

that part that lies in the lower half-plane.

Ω+

Ω−

I
R

Ω

z

z

Figure 11. An open set symmetric across the real axis

Also, let I = Ω ∩ R so that I denotes the interior of that part of the
boundary of Ω+ and Ω− that lies on the real axis. Then we have

Ω+ ∪ I ∪ Ω− = Ω

and the only interesting case of the next theorem occurs, of course, when
I is non-empty.

Theorem 5.5 (Symmetry principle) If f+ and f− are holomorphic
functions in Ω+ and Ω− respectively, that extend continuously to I and

f+(x) = f−(x) for all x ∈ I,

then the function f defined on Ω by

f(z) =

 f+(z) if z ∈ Ω+,
f+(z) = f−(z) if z ∈ I,
f−(z) if z ∈ Ω−

is holomorphic on all of Ω.

Proof. One notes first that f is continuous throughout Ω. The only
difficulty is to prove that f is holomorphic at points of I. Suppose D is a
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disc centered at a point on I and entirely contained in Ω. We prove that
f is holomorphic in D by Morera’s theorem. Suppose T is a triangle in
D. If T does not intersect I, then∫

T

f(z) dz = 0

since f is holomorphic in the upper and lower half-discs. Suppose now
that one side or vertex of T is contained in I, and the rest of T is in,
say, the upper half-disc. If Tε is the triangle obtained from T by slightly
raising the edge or vertex which lies on I, we have

∫
Tε
f = 0 since Tε is

entirely contained in the upper half-disc (an illustration of the case when
an edge lies on I is given in Figure 12(a)). We then let ε→ 0, and by
continuity we conclude that ∫

T

f(z) dz = 0.

(a)

(b)

T
T1

T2 T3

TεT

Figure 12. (a) Raising a vertex; (b) splitting a triangle

If the interior of T intersects I, we can reduce the situation to the
previous one by writing T as the union of triangles each of which has an
edge or vertex on I as shown in Figure 12(b). By Morera’s theorem we
conclude that f is holomorphic in D, as was to be shown.

We can now state the extension principle, where we use the above
notation.
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Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holo-
morphic function in Ω+ that extends continuously to I and such that f
is real-valued on I. Then there exists a function F holomorphic in all of
Ω such that F = f on Ω+.

Proof. The idea is simply to define F (z) for z ∈ Ω− by

F (z) = f(z).

To prove that F is holomorphic in Ω− we note that if z, z0 ∈ Ω−, then
z, z0 ∈ Ω+ and hence, the power series expansion of f near z0 gives

f(z) =
∑

an(z − z0)n.

As a consequence we see that

F (z) =
∑

an(z − z0)n

and F is holomorphic in Ω−. Since f is real valued on I we have f(x) =
f(x) whenever x ∈ I and hence F extends continuously up to I. The
proof is complete once we invoke the symmetry principle.

5.5 Runge’s approximation theorem

We know by Weierstrass’s theorem that any continuous function on a
compact interval can be approximated uniformly by polynomials.4 With
this result in mind, one may inquire about similar approximations in
complex analysis. More precisely, we ask the following question: what
conditions on a compact set K ⊂ C guarantee that any function holo-
morphic in a neighborhood of this set can be approximated uniformly by
polynomials on K?

An example of this is provided by power series expansions. We recall
that if f is a holomorphic function in a disc D, then it has a power series
expansion f(z) =

∑∞
n=0 anz

n that converges uniformly on every compact
set K ⊂ D. By taking partial sums of this series, we conclude that f can
be approximated uniformly by polynomials on any compact subset of D.

In general, however, some condition on K must be imposed, as we see
by considering the function f(z) = 1/z on the unit circle K = C. Indeed,
recall that

∫
C
f(z) dz = 2πi, and if p is any polynomial, then Cauchy’s

theorem implies
∫

C
p(z) dz = 0, and this quickly leads to a contradiction.

4A proof may be found in Section 1.8, Chapter 5, of Book I.
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A restriction on K that guarantees the approximation pertains to the
topology of its complement: Kc must be connected. In fact, a slight mod-
ification of the above example when f(z) = 1/z proves that this condition
on K is also necessary; see Problem 4.

Conversely, uniform approximations exist when Kc is connected, and
this result follows from a theorem of Runge which states that for any K
a uniform approximation exists by rational functions with “singularities”
in the complement of K.5 This result is remarkable since rational func-
tions are globally defined, while f is given only in a neighborhood of K.
In particular, f could be defined independently on different components
of K, making the conclusion of the theorem even more striking.

Theorem 5.7 Any function holomorphic in a neighborhood of a compact
set K can be approximated uniformly on K by rational functions whose
singularities are in Kc.

If Kc is connected, any function holomorphic in a neighborhood of K
can be approximated uniformly on K by polynomials.

We shall see how the second part of the theorem follows from the
first: when Kc is connected, one can “push” the singularities to infinity
thereby transforming the rational functions into polynomials.

The key to the theorem lies in an integral representation formula that is
a simple consequence of the Cauchy integral formula applied to a square.

Lemma 5.8 Suppose f is holomorphic in an open set Ω, and K ⊂ Ω is
compact. Then, there exists finitely many segments γ1, . . . , γN in Ω −K
such that

(15) f(z) =
N∑

n=1

1
2πi

∫
γn

f(ζ)
ζ − z

dζ for all z ∈ K.

Proof. Let d = c · d(K,Ωc), where c is any constant < 1/
√

2, and
consider a grid formed by (solid) squares with sides parallel to the axis
and of length d.

We let Q = {Q1, . . . , QM} denote the finite collection of squares in
this grid that intersect K, with the boundary of each square given the
positive orientation. (We denote by ∂Qm the boundary of the square
Qm.) Finally, we let γ1, . . . , γN denote the sides of squares in Q that do
not belong to two adjacent squares in Q. (See Figure 13.) The choice of
d guarantees that for each n, γn ⊂ Ω, and γn does not intersect K; for if
it did, then it would belong to two adjacent squares in Q, contradicting
our choice of γn.

5These singularities are points where the function is not holomorphic, and are “poles”,
as defined in the next chapter.
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Figure 13. The union of the γn’s is in bold-face

Since for any z ∈ K that is not on the boundary of a square in Q there
exists j so that z ∈ Qj, Cauchy’s theorem implies

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ =
{
f(z) if m = j,

0 if m �= j.

Thus, for all such z we have

f(z) =
M∑

m=1

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ.

However, ifQm andQm′ are adjacent, the integral over their common side
is taken once in each direction, and these cancel. This establishes (15)
when z is in K and not on the boundary of a square in Q. Since γn ⊂ Kc,
continuity guarantees that this relation continues to hold for all z ∈ K,
as was to be shown.

The first part of Theorem 5.7 is therefore a consequence of the next
lemma.

Lemma 5.9 For any line segment γ entirely contained in Ω −K, there
exists a sequence of rational functions with singularities on γ that ap-
proximate the integral

∫
γ
f(ζ)/(ζ − z) dζ uniformly on K.

Proof. If γ(t) : [0, 1] → C is a parametrization for γ, then∫
γ

f(ζ)
ζ − z

dζ =
∫ 1

0

f(γ(t))
γ(t) − z

γ′(t) dt.
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Since γ does not intersect K, the integrand F (z, t) in this last integral
is jointly continuous on K × [0, 1], and since K is compact, given ε > 0,
there exists δ > 0 such that

sup
z∈K

|F (z, t1) − F (z, t2)| < ε whenever |t1 − t2| < δ.

Arguing as in the proof of Theorem 5.4, we see that the Riemann sums
of the integral

∫ 1

0
F (z, t) dt approximate it uniformly on K. Since each

of these Riemann sums is a rational function with singularities on γ, the
lemma is proved.

Finally, the process of pushing the poles to infinity is accomplished by
using the fact that Kc is connected. Since any rational function whose
only singularity is at the point z0 is a polynomial in 1/(z − z0), it suffices
to establish the next lemma to complete the proof of Theorem 5.7.

Lemma 5.10 If Kc is connected and z0 /∈ K, then the function
1/(z − z0) can be approximated uniformly on K by polynomials.

Proof. First, we choose a point z1 that is outside a large open disc D
centered at the origin and which contains K. Then

1
z − z1

= − 1
z1

1
1 − z/z1

=
∞∑

n=1

− zn

zn+1
1

,

where the series converges uniformly for z ∈ K. The partial sums of
this series are polynomials that provide a uniform approximation to
1/(z − z1) on K. In particular, this implies that any power 1/(z − z1)k

can also be approximated uniformly on K by polynomials.
It now suffices to prove that 1/(z − z0) can be approximated uniformly

on K by polynomials in 1/(z − z1). To do so, we use the fact that Kc is
connected to travel from z0 to the point z1. Let γ be a curve in Kc that
is parametrized by γ(t) on [0, 1], and such that γ(0) = z0 and γ(1) = z1.
If we let ρ = 1

2d(K, γ), then ρ > 0 since γ and K are compact. We then
choose a sequence of points {w1, . . . , w} on γ such that w0 = z0, w = z1,
and |wj − wj+1| < ρ for all 0 ≤ j < �.

We claim that if w is a point on γ, and w′ any other point with
|w − w′| < ρ, then 1/(z − w) can be approximated uniformly on K by
polynomials in 1/(z − w′). To see this, note that

1
z − w

=
1

z − w′
1

1 − w−w′
z−w′

=
∞∑

n=0

(w − w′)n

(z − w′)n+1
,
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and since the sum converges uniformly for z ∈ K, the approximation by
partial sums proves our claim.

This result allows us to travel from z0 to z1 through the finite sequence
{wj} to find that 1/(z − z0) can be approximated uniformly on K by
polynomials in 1/(z − z1). This concludes the proof of the lemma, and
also that of the theorem.

6 Exercises

1. Prove that ∫ ∞

0

sin(x2) dx =

∫ ∞

0

cos(x2) dx =

√
2π

4
.

These are the Fresnel integrals. Here,
∫∞
0

is interpreted as limR→∞
∫ R

0
.

[Hint: Integrate the function e−z2
over the path in Figure 14. Recall that∫∞

−∞ e−x2
dx =

√
π.]

R

Rei π
4

0

Figure 14. The contour in Exercise 1

2. Show that

∫ ∞

0

sin x

x
dx =

π

2
.

[Hint: The integral equals 1
2i

∫∞
−∞

eix−1
x

dx. Use the indented semicircle.]

3. Evaluate the integrals∫ ∞

0

e−ax cos bx dx and

∫ ∞

0

e−ax sin bx dx , a > 0

by integrating e−Az, A =
√
a2 + b2, over an appropriate sector with angle ω, with

cosω = a/A.
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4. Prove that for all ξ ∈ C we have e−πξ2
=

∫ ∞

−∞
e−πx2

e2πixξ dx.

5. Suppose f is continuously complex differentiable on Ω, and T ⊂ Ω is a triangle
whose interior is also contained in Ω. Apply Green’s theorem to show that∫

T

f(z) dz = 0.

This provides a proof of Goursat’s theorem under the additional assumption that
f ′ is continuous.

[Hint: Green’s theorem says that if (F,G) is a continuously differentiable vector
field, then ∫

T

F dx+Gdy =

∫
Interior of T

(
∂G

∂x
− ∂F

∂y

)
dxdy.

For appropriate F and G, one can then use the Cauchy-Riemann equations.]

6. Let Ω be an open subset of C and let T ⊂ Ω be a triangle whose interior is also
contained in Ω. Suppose that f is a function holomorphic in Ω except possibly at
a point w inside T . Prove that if f is bounded near w, then∫

T

f(z) dz = 0.

7. Suppose f : D → C is holomorphic. Show that the diameter d =
supz, w∈D |f(z) − f(w)| of the image of f satisfies

2|f ′(0)| ≤ d.

Moreover, it can be shown that equality holds precisely when f is linear, f(z) =
a0 + a1z.

Note. In connection with this result, see the relationship between the diameter of
a curve and Fourier series described in Problem 1, Chapter 4, Book I.

[Hint: 2f ′(0) = 1
2πi

∫
|ζ|=r

f(ζ)−f(−ζ)

ζ2 dζ whenever 0 < r < 1.]

8. If f is a holomorphic function on the strip −1 < y < 1, x ∈ R with

|f(z)| ≤ A(1 + |z|)η, η a fixed real number

for all z in that strip, show that for each integer n ≥ 0 there exists An ≥ 0 so that

|f (n)(x)| ≤ An(1 + |x|)η, for all x ∈ R.

[Hint: Use the Cauchy inequalities.]
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9. Let Ω be a bounded open subset of C, and ϕ : Ω → Ω a holomorphic function.
Prove that if there exists a point z0 ∈ Ω such that

ϕ(z0) = z0 and ϕ′(z0) = 1

then ϕ is linear.

[Hint: Why can one assume that z0 = 0? Write ϕ(z) = z + anz
n +O(zn+1) near

0, and prove that if ϕk = ϕ ◦ · · · ◦ ϕ (where ϕ appears k times), then ϕk(z) =
z + kanz

n +O(zn+1). Apply the Cauchy inequalities and let k → ∞ to conclude
the proof. Here we use the standard O notation, where f(z) = O(g(z)) as z → 0
means that |f(z)| ≤ C|g(z)| for some constant C as |z| → 0.]

10. Weierstrass’s theorem states that a continuous function on [0, 1] can be uni-
formly approximated by polynomials. Can every continuous function on the closed
unit disc be approximated uniformly by polynomials in the variable z?

11. Let f be a holomorphic function on the disc DR0 centered at the origin and
of radius R0.

(a) Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1

2π

∫ 2π

0

f(Reiϕ)Re

(
Reiϕ + z

Reiϕ − z

)
dϕ.

(b) Show that

Re

(
Reiγ + r

Reiγ − r

)
=

R2 − r2

R2 − 2Rr cos γ + r2
.

[Hint: For the first part, note that if w = R2/z, then the integral of f(ζ)/(ζ − w)
around the circle of radius R centered at the origin is zero. Use this, together with
the usual Cauchy integral formula, to deduce the desired identity.]

12. Let u be a real-valued function defined on the unit disc D. Suppose that u is
twice continuously differentiable and harmonic, that is,

u(x, y) = 0

for all (x, y) ∈ D.

(a) Prove that there exists a holomorphic function f on the unit disc such that

Re(f) = u.

Also show that the imaginary part of f is uniquely defined up to an additive
(real) constant. [Hint: From the previous chapter we would have f ′(z) =
2∂u/∂z. Therefore, let g(z) = 2∂u/∂z and prove that g is holomorphic.
Why can one find F with F ′ = g? Prove that Re(F ) differs from u by a real
constant.]
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(b) Deduce from this result, and from Exercise 11, the Poisson integral repre-
sentation formula from the Cauchy integral formula: If u is harmonic in the
unit disc and continuous on its closure, then if z = reiθ one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − ϕ)u(ϕ) dϕ

where Pr(γ) is the Poisson kernel for the unit disc given by

Pr(γ) =
1 − r2

1 − 2r cos γ + r2
.

13. Suppose f is an analytic function defined everywhere in C and such that for
each z0 ∈ C at least one coefficient in the expansion

f(z) =

∞∑
n=0

cn(z − z0)
n

is equal to 0. Prove that f is a polynomial.

[Hint: Use the fact that cnn! = f (n)(z0) and use a countability argument.]

14. Suppose that f is holomorphic in an open set containing the closed unit disc,
except for a pole at z0 on the unit circle. Show that if

∞∑
n=0

anz
n

denotes the power series expansion of f in the open unit disc, then

lim
n→∞

an

an+1
= z0.

15. Suppose f is a non-vanishing continuous function on D that is holomorphic in
D. Prove that if

|f(z)| = 1 whenever |z| = 1,

then f is constant.

[Hint: Extend f to all of C by f(z) = 1/f(1/z) whenever |z| > 1, and argue as in
the Schwarz reflection principle.]

7 Problems

1. Here are some examples of analytic functions on the unit disc that cannot be
extended analytically past the unit circle. The following definition is needed. Let
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f be a function defined in the unit disc D, with boundary circle C. A point w on C
is said to be regular for f if there is an open neighborhood U of w and an analytic
function g on U , so that f = g on D ∩ U . A function f defined on D cannot be
continued analytically past the unit circle if no point of C is regular for f .

(a) Let

f(z) =
∞∑

n=0

z2n

for |z| < 1.

Notice that the radius of convergence of the above series is 1. Show that
f cannot be continued analytically past the unit disc. [Hint: Suppose
θ = 2πp/2k, where p and k are positive integers. Let z = reiθ; then
|f(reiθ)| → ∞ as r → 1.]

(b) ∗ Fix 0 < α <∞. Show that the analytic function f defined by

f(z) =
∞∑

n=0

2−nαz2n

for |z| < 1

extends continuously to the unit circle, but cannot be analytically continued
past the unit circle. [Hint: There is a nowhere differentiable function lurking
in the background. See Chapter 4 in Book I.]

2.∗ Let

F (z) =
∞∑

n=1

d(n)zn for |z| < 1

where d(n) denotes the number of divisors of n. Observe that the radius of con-
vergence of this series is 1. Verify the identity

∞∑
n=1

d(n)zn =

∞∑
n=1

zn

1 − zn
.

Using this identity, show that if z = r with 0 < r < 1, then

|F (r)| ≥ c
1

1 − r
log(1/(1 − r))

as r → 1. Similarly, if θ = 2πp/q where p and q are positive integers and z = reiθ,
then

|F (reiθ)| ≥ cp/q
1

1 − r
log(1/(1 − r))

as r → 1. Conclude that F cannot be continued analytically past the unit disc.

3. Morera’s theorem states that if f is continuous in C, and
∫

T
f(z) dz = 0 for all

triangles T , then f is holomorphic in C. Naturally, we may ask if the conclusion
still holds if we replace triangles by other sets.
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(a) Suppose that f is continuous on C, and

(16)

∫
C

f(z) dz = 0

for every circle C. Prove that f is holomorphic.

(b) More generally, let Γ be any toy contour, and F the collection of all trans-
lates and dilates of Γ. Show that if f is continuous on C, and∫

γ

f(z) dz = 0 for all γ ∈ F

then f is holomorphic. In particular, Morera’s theorem holds under the
weaker assumption that

∫
T
f(z) dz = 0 for all equilateral triangles.

[Hint: As a first step, assume that f is twice real differentiable, and write f(z) =
f(z0) + a(z − z0) + b(z − z0) +O(|z − z0|2) for z near z0. Integrating this expan-
sion over small circles around z0 yields ∂f/∂z = b = 0 at z0. Alternatively, suppose
only that f is differentiable and apply Green’s theorem to conclude that the real
and imaginary parts of f satisfy the Cauchy-Riemann equations.

In general, let ϕ(w) = ϕ(x, y) (when w = x+ iy) denote a smooth function with
0 ≤ ϕ(w) ≤ 1, and

∫
R2 ϕ(w) dV (w) = 1, where dV (w) = dxdy, and

∫
denotes the

usual integral of a function of two variables in R2. For each ε > 0, let ϕε(z) =
ε−2ϕ(ε−1z), as well as

fε(z) =

∫
R2
f(z − w)ϕε(w) dV (w),

where the integral denotes the usual integral of functions of two variables, with
dV (w) the area element of R2. Then fε is smooth, satisfies condition (16), and
fε → f uniformly on any compact subset of C.]

4. Prove the converse to Runge’s theorem: ifK is a compact set whose complement
if not connected, then there exists a function f holomorphic in a neighborhood of
K which cannot be approximated uniformly by polynomial on K.

[Hint: Pick a point z0 in a bounded component of Kc, and let f(z) = 1/(z − z0).
If f can be approximated uniformly by polynomials on K, show that there exists a
polynomial p such that |(z − z0)p(z) − 1| < 1. Use the maximum modulus principle
(Chapter 3) to show that this inequality continues to hold for all z in the component
of Kc that contains z0.]

5.∗ There exists an entire function F with the following “universal” property: given
any entire function h, there is an increasing sequence {Nk}∞k=1 of positive integers,
so that

lim
n→∞

F (z +Nk) = h(z)

uniformly on every compact subset of C.
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(a) Let p1, p2, . . . denote an enumeration of the collection of polynomials whose
coefficients have rational real and imaginary parts. Show that it suffices
to find an entire function F and an increasing sequence {Mn} of positive
integers, such that

(17) |F (z) − pn(z −Mn)| < 1

n
whenever z ∈ Dn,

where Dn denotes the disc centered at Mn and of radius n. [Hint: Given
h entire, there exists a sequence {nk} such that limk→∞ pnk(z) = h(z) uni-
formly on every compact subset of C.]

(b) Construct F satisfying (17) as an infinite series

F (z) =
∞∑

n=1

un(z)

where un(z) = pn(z −Mn)e−cn(z−Mn)2 , and the quantities cn > 0 andMn >
0 are chosen appropriately with cn → 0 and Mn → ∞. [Hint: The function

e−z2
vanishes rapidly as |z| → ∞ in the sectors {| arg z| < π/4 − δ} and

{|π − arg z| < π/4 − δ}.]
In the same spirit, there exists an alternate “universal” entire function G with

the following property: given any entire function h, there is an increasing sequence
{Nk}∞k=1 of positive integers, so that

lim
k→∞

DNkG(z) = h(z)

uniformly on every compact subset of C. Here DjG denotes the jth (complex)
derivative of G.



3 Meromorphic Functions and
the Logarithm

One knows that the differential calculus, which has
contributed so much to the progress of analysis, is
founded on the consideration of differential coefficients,
that is derivatives of functions. When one attributes
an infinitesimal increase ε to the variable x, the func-
tion f(x) of this variable undergoes in general an in-
finitesimal increase of which the first term is propor-
tional to ε, and the finite coefficient of ε of this in-
crease is what is called its differential coefficient... If
considering the values of x where f(x) becomes infi-
nite, we add to one of these values designated by x1,
the infinitesimal ε, and then develop f(x1 + ε) in in-
creasing power of the same quantity, the first terms
of this development contain negative powers of ε; one
of these will be the product of 1/ε with a finite coef-
ficient, which we will call the residue of the function
f(x), relative to the particular value x1 of the variable
x. Residues of this kind present themselves naturally
in several branches of algebraic and infinitesimal anal-
ysis. Their consideration furnish methods that can be
simply used, that apply to a large number of diverse
questions, and that give new formulae that would seem
to be of interest to mathematicians...

A. L. Cauchy, 1826

There is a general principle in the theory, already implicit in Riemann’s
work, which states that analytic functions are in an essential way charac-
terized by their singularities. That is to say, globally analytic functions
are “effectively” determined by their zeros, and meromorphic functions
by their zeros and poles. While these assertions cannot be formulated
as precise general theorems, there are nevertheless significant instances
where this principle applies.

We begin this chapter by considering singularities, in particular the
different kind of point singularities (“isolated” singularities) that a holo-
morphic function can have. In order of increasing severity, these are:

• removable singularities
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• poles

• essential singularities.

The first type is harmless since a function can actually be extended
to be holomorphic at its removable singularities (hence the name). Near
the third type, the function oscillates and may grow faster than any
power, and a complete understanding of its behavior is not easy. For the
second type the analysis is more straight forward and is connected with
the calculus of residues, which arises as follows.

Recall that by Cauchy’s theorem a holomorphic function f in an open
set which contains a closed curve γ and its interior satisfies∫

γ

f(z) dz = 0.

The question that occurs is: what happens if f has a pole in the interior
of the curve? To try to answer this question consider the example f(z) =
1/z, and recall that if C is a (positively oriented) circle centered at 0,
then ∫

C

dz

z
= 2πi.

This turns out to be the key ingredient in the calculus of residues.

A new aspect appears when we consider indefinite integrals of holomor-
phic functions that have singularities. As the basic example f(z) = 1/z
shows, the resulting “function” (in this case the logarithm) may not be
single-valued, and understanding this phenomenon is of importance for
a number of subjects. Exploiting this multi-valuedness leads in effect to
the “argument principle.” We can use this principle to count the number
of zeros of a holomorphic function inside a suitable curve. As a simple
consequence of this result, we obtain a significant geometric property of
holomorphic functions: they are open mappings. From this, the maxi-
mum principle, another important feature of holomorphic functions, is
an easy step.

In order to turn to the logarithm itself, and come to grips with the
precise nature of its multi-valuedness, we introduce the notions of homo-
topy of curves and simply connected domains. It is on the latter type of
open sets that single-valued branches of the logarithm can be defined.

1 Zeros and poles

By definition, a point singularity of a function f is a complex number
z0 such that f is defined in a neighborhood of z0 but not at the point
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z0 itself. We shall also call such points isolated singularities. For
example, if the function f is defined only on the punctured plane by
f(z) = z, then the origin is a point singularity. Of course, in that case,
the function f can actually be defined at 0 by setting f(0) = 0, so that
the resulting extension is continuous and in fact entire. (Such points
are then called removable singularities.) More interesting is the case
of the function g(z) = 1/z defined in the punctured plane. It is clear
now that g cannot be defined as a continuous function, much less as
a holomorphic function, at the point 0. In fact, g(z) grows to infinity
as z approaches 0, and we shall say that the origin is a pole singularity.
Finally, the case of the function h(z) = e1/z on the punctured plane shows
that removable singularities and poles do not tell the whole story. Indeed,
the function h(z) grows indefinitely as z approaches 0 on the positive real
line, while h approaches 0 as z goes to 0 on the negative real axis. Finally
h oscillates rapidly, yet remains bounded, as z approaches the origin on
the imaginary axis.

Since singularities often appear because the denominator of a frac-
tion vanishes, we begin with a local study of the zeros of a holomorphic
function.

A complex number z0 is a zero for the holomorphic function f if
f(z0) = 0. In particular, analytic continuation shows that the zeros of
a non-trivial holomorphic function are isolated. In other words, if f is
holomorphic in Ω and f(z0) = 0 for some z0 ∈ Ω, then there exists an
open neighborhood U of z0 such that f(z) �= 0 for all z ∈ U − {z0}, unless
f is identically zero. We start with a local description of a holomorphic
function near a zero.

Theorem 1.1 Suppose that f is holomorphic in a connected open set Ω,
has a zero at a point z0 ∈ Ω, and does not vanish identically in Ω. Then
there exists a neighborhood U ⊂ Ω of z0, a non-vanishing holomorphic
function g on U , and a unique positive integer n such that

f(z) = (z − z0)ng(z) for all z ∈ U.

Proof. Since Ω is connected and f is not identically zero, we conclude
that f is not identically zero in a neighborhood of z0. In a small disc
centered at z0 the function f has a power series expansion

f(z) =
∞∑

k=0

ak(z − z0)k.

Since f is not identically zero near z0, there exists a smallest integer n



74 Chapter 3. MEROMORPHIC FUNCTIONS AND THE LOGARITHM

such that an �= 0. Then, we can write

f(z) = (z − z0)n[an + an+1(z − z0) + · · · ] = (z − z0)ng(z) ,

where g is defined by the series in brackets, and hence is holomorphic,
and is nowhere vanishing for all z close to z0 (since an �= 0). To prove
the uniqueness of the integer n, suppose that we can also write

f(z) = (z − z0)ng(z) = (z − z0)mh(z)

where h(z0) �= 0. If m > n, then we may divide by (z − z0)n to see that

g(z) = (z − z0)m−nh(z)

and letting z → z0 yields g(z0) = 0, a contradiction. If m < n a similar
argument gives h(z0) = 0, which is also a contradiction. We conclude
that m = n, thus h = g, and the theorem is proved.

In the case of the above theorem, we say that f has a zero of order
n (or multiplicity n) at z0. If a zero is of order 1, we say that it is
simple. We observe that, quantitatively, the order describes the rate at
which the function vanishes.

The importance of the previous theorem comes from the fact that
we can now describe precisely the type of singularity possessed by the
function 1/f at z0.

For this purpose, it is now convenient to define a deleted neighbor-
hood of z0 to be an open disc centered at z0, minus the point z0, that
is, the set

{z : 0 < |z − z0| < r}

for some r > 0. Then, we say that a function f defined in a deleted
neighborhood of z0 has a pole at z0, if the function 1/f , defined to be
zero at z0, is holomorphic in a full neighborhood of z0.

Theorem 1.2 If f has a pole at z0 ∈ Ω, then in a neighborhood of that
point there exist a non-vanishing holomorphic function h and a unique
positive integer n such that

f(z) = (z − z0)−nh(z).

Proof. By the previous theorem we have 1/f(z) = (z − z0)ng(z),
where g is holomorphic and non-vanishing in a neighborhood of z0, so
the result follows with h(z) = 1/g(z).
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The integer n is called the order (or multiplicity) of the pole, and
describes the rate at which the function grows near z0. If the pole is of
order 1, we say that it is simple.

The next theorem should be reminiscent of power series expansion,
except that now we allow terms of negative order, to account for the
presence of a pole.

Theorem 1.3 If f has a pole of order n at z0, then

(1) f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)
+G(z) ,

where G is a holomorphic function in a neighborhood of z0.

Proof. The proof follows from the multiplicative statement in the
previous theorem. Indeed, the function h has a power series expansion

h(z) = A0 + A1(z − z0) + · · ·

so that

f(z) = (z − z0)−n(A0 +A1(z − z0) + · · · )

=
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)
+G(z).

The sum
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)

is called the principal part of f at the pole z0, and the coefficient a−1 is
the residue of f at that pole. We write resz0f = a−1. The importance of
the residue comes from the fact that all the other terms in the principal
part, that is, those of order strictly greater than 1, have primitives in a
deleted neighborhood of z0. Therefore, if P (z) denotes the principal part
above and C is any circle centered at z0, we get

1
2πi

∫
C

P (z) dz = a−1.

We shall return to this important point in the section on the residue
formula.

As we shall see, in many cases, the evaluation of integrals reduces to
the calculation of residues. In the case when f has a simple pole at z0,
it is clear that

resz0f = lim
z→z0

(z − z0)f(z).
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If the pole is of higher order, a similar formula holds, one that involves
differentiation as well as taking a limit.

Theorem 1.4 If f has a pole of order n at z0, then

resz0f = lim
z→z0

1
(n− 1)!

(
d

dz

)n−1

(z − z0)nf(z).

The theorem is an immediate consequence of formula (1), which implies

(z − z0)nf(z) = a−n + a−n+1(z − z0) + · · · + a−1(z − z0)n−1 +

+G(z)(z − z0)n.

2 The residue formula

We now discuss the celebrated residue formula. Our approach follows the
discussion of Cauchy’s theorem in the last chapter: we first consider the
case of the circle and its interior the disc, and then explain generalizations
to toy contours and their interiors.

Theorem 2.1 Suppose that f is holomorphic in an open set containing
a circle C and its interior, except for a pole at z0 inside C. Then∫

C

f(z) dz = 2πi resz0f.

Proof. Once again, we may choose a keyhole contour that avoids the
pole, and let the width of the corridor go to zero to see that∫

C

f(z) dz =
∫

Cε

f(z) dz

where Cε is the small circle centered at the pole z0 and of radius ε.
Now we observe that

1
2πi

∫
Cε

a−1

z − z0
dz = a−1

is an immediate consequence of the Cauchy integral formula (Theo-
rem 4.1 of the previous chapter), applied to the constant function f =
a−1. Similarly,

1
2πi

∫
Cε

a−k

(z − z0)k
dz = 0
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when k > 1, by using the corresponding formulae for the derivatives
(Corollary 4.2 also in the previous chapter). But we know that in a
neighborhood of z0 we can write

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

z − z0
+G(z),

where G is holomorphic. By Cauchy’s theorem, we also know that∫
Cε
G(z) dz = 0, hence

∫
Cε
f(z) dz = a−1. This implies the desired re-

sult.

This theorem can be generalized to the case of finitely many poles in
the circle, as well as to the case of toy contours.

Corollary 2.2 Suppose that f is holomorphic in an open set containing
a circle C and its interior, except for poles at the points z1, . . . , zN inside
C. Then ∫

C

f(z) dz = 2πi
N∑

k=1

reszk
f.

For the proof, consider a multiple keyhole which has a loop avoiding
each one of the poles. Let the width of the corridors go to zero. In
the limit, the integral over the large circle equals a sum of integrals over
small circles to which Theorem 2.1 applies.

Corollary 2.3 Suppose that f is holomorphic in an open set containing
a toy contour γ and its interior, except for poles at the points z1, . . . , zN

inside γ. Then ∫
γ

f(z) dz = 2πi
N∑

k=1

reszk
f.

In the above, we take γ to have positive orientation.
The proof consists of choosing a keyhole appropriate for the given toy

contour, so that, as we have seen previously, we can reduce the situation
to integrating over small circles around the poles where Theorem 2.1
applies.

The identity
∫

γ
f(z) dz = 2πi

∑N
k=1 reszk

f is referred to as the residue
formula.

2.1 Examples

The calculus of residues provides a powerful technique to compute a
wide range of integrals. In the examples we give next, we evaluate three
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improper Riemann integrals of the form∫ ∞

−∞
f(x) dx.

The main idea is to extend f to the complex plane, and then choose a
family γR of toy contours so that

lim
R→∞

∫
γR

f(z) dz =
∫ ∞

−∞
f(x) dx.

By computing the residues of f at its poles, we easily obtain
∫

γR
f(z) dz.

The challenging part is to choose the contours γR, so that the above limit
holds. Often, this choice is motivated by the decay behavior of f .

Example 1. First, we prove that

(2)
∫ ∞

−∞

dx

1 + x2
= π

by using contour integration. Note that if we make the change of variables
x 	→ x/y, this yields

1
π

∫ ∞

−∞

y dx

y2 + x2
=
∫ ∞

−∞
Py(x) dx.

In other words, formula (2) says that the integral of the Poisson kernel
Py(x) is equal to 1 for each y > 0. This was proved quite easily in
Lemma 2.5 of Chapter 5 in Book I, since 1/(1 + x2) is the derivative of
arctanx. Here we provide a residue calculation that leads to another
proof of (2).

Consider the function

f(z) =
1

1 + z2
,

which is holomorphic in the complex plane except for simple poles at the
points i and −i. Also, we choose the contour γR shown in Figure 1. The
contour consists of the segment [−R,R] on the real axis and of a large
half-circle centered at the origin in the upper half-plane.
Since we may write

f(z) =
1

(z − i)(z + i)
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R−R

γR

i

0

Figure 1. The contour γR in Example 1

we see that the residue of f at i is simply 1/2i. Therefore, if R is large
enough, we have ∫

γR

f(z) dz =
2πi
2i

= π.

If we denote by C+
R the large half-circle of radius R, we see that∣∣∣∣∣
∫

C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
B

R2
≤ M

R
,

where we have used the fact that |f(z)| ≤ B/|z|2 when z ∈ C+
R and R is

large. So this integral goes to 0 as R→ ∞. Therefore, in the limit we
find that ∫ ∞

−∞
f(x) dx = π,

as desired. We remark that in this example, there is nothing special
about our choice of the semicircle in the upper half-plane. One gets the
same conclusion if one uses the semicircle in the lower half-plane, with
the other pole and the appropriate residue.

Example 2. An integral that will play an important role in Chapter 6
is ∫ ∞

−∞

eax

1 + ex
dx =

π

sin πa
, 0 < a < 1.

To prove this formula, let f(z) = eaz/(1 + ez), and consider the con-
tour consisting of a rectangle in the upper half-plane with a side lying



80 Chapter 3. MEROMORPHIC FUNCTIONS AND THE LOGARITHM

2πi γR

0 R−R

πi

Figure 2. The contour γR in Example 2

on the real axis, and a parallel side on the line Im(z) = 2π, as shown in
Figure 2.

The only point in the rectangle γR where the denominator of f vanishes
is z = πi. To compute the residue of f at that point, we argue as follows:
First, note

(z − πi)f(z) = eaz z − πi

1 + ez
= eaz z − πi

ez − eπi
.

We recognize on the right the inverse of a difference quotient, and in fact

lim
z→πi

ez − eπi

z − πi
= eπi = −1

since ez is its own derivative. Therefore, the function f has a simple pole
at πi with residue

resπif = −eaπi.

As a consequence, the residue formula says that

(3)
∫

γR

f = −2πieaπi.

We now investigate the integrals of f over each side of the rectangle. Let
IR denote ∫ R

−R

f(x) dx

and I the integral we wish to compute, so that IR → I as R→ ∞. Then,
it is clear that the integral of f over the top side of the rectangle (with
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the orientation from right to left) is

−e2πiaIR.

Finally, if AR = {R+ it : 0 ≤ t ≤ 2π} denotes the vertical side on the
right, then ∣∣∣∣∫

AR

f

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ ea(R+it)

1 + eR+it

∣∣∣∣ dt ≤ Ce(a−1)R,

and since a < 1, this integral tends to 0 as R → ∞. Similarly, the integral
over the vertical segment on the left goes to 0, since it can be bounded
by Ce−aR and a > 0. Therefore, in the limit as R tends to infinity, the
identity (3) yields

I − e2πiaI = −2πieaπi ,

from which we deduce

I = −2πi
eaπi

1 − e2πia

=
2πi

eπia − e−πia

=
π

sin πa
,

and the computation is complete.

Example 3. Now we calculate another Fourier transform, namely∫ ∞

−∞

e−2πixξ

coshπx
dx =

1
coshπξ

where

cosh z =
ez + e−z

2
.

In other words, the function 1/ coshπx is its own Fourier transform, a
property also shared by e−πx2

(see Example 1, Chapter 2). To see this,
we use a rectangle γR as shown on Figure 3 whose width goes to infinity,
but whose height is fixed.

For a fixed ξ ∈ R, let

f(z) =
e−2πizξ

coshπz
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2i

−R R

γR

α

β

0

Figure 3. The contour γR in Example 3

and note that the denominator of f vanishes precisely when eπz = −e−πz,
that is, when e2πz = −1. In other words, the only poles of f inside the
rectangle are at the points α = i/2 and β = 3i/2. To find the residue of
f at α, we note that

(z − α)f(z) = e−2πizξ 2(z − α)
eπz + e−πz

= 2e−2πizξeπz (z − α)
e2πz − e2πα

.

We recognize on the right the reciprocal of the difference quotient for the
function e2πz at z = α. Therefore

lim
z→α

(z − α)f(z) = 2e−2πiαξeπα 1
2πe2πα

=
eπξ

πi
,

which shows that f has a simple pole at α with residue eπξ/(πi). Simi-
larly, we find that f has a simple pole at β with residue −e3πξ/(πi).

We dispense with the integrals of f on the vertical sides by showing
that they go to zero as R tends to infinity. Indeed, if z = R+ iy with
0 ≤ y ≤ 2, then

|e−2πizξ| ≤ e4π|ξ|,
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and

| coshπz| =
∣∣∣∣eπz + e−πz

2

∣∣∣∣
≥ 1

2

∣∣ |eπz| − |e−πz |
∣∣

≥ 1
2
(eπR − e−πR)

→ ∞ as R→ ∞,

which shows that the integral over the vertical segment on the right goes
to 0 as R→ ∞. A similar argument shows that the integral of f over
the vertical segment on the left also goes to 0 as R→ ∞. Finally, we see
that if I denotes the integral we wish to calculate, then the integral of f
over the top side of the rectangle (with the orientation from right to left)
is simply −e4πξI where we have used the fact that coshπζ is periodic
with period 2i. In the limit as R tends to infinity, the residue formula
gives

I − e4πξI = 2πi
(
eπξ

πi
− e3πξ

πi

)
= −2e2πξ(eπξ − e−πξ),

and since 1 − e4πξ = −e2πξ(e2πξ − e−2πξ), we find that

I = 2
eπξ − e−πξ

e2πξ − e−2πξ
= 2

eπξ − e−πξ

(eπξ − e−πξ)(eπξ + e−πξ)
=

2
eπξ + e−πξ

=
1

coshπξ

as claimed.
A similar argument actually establishes the following formula:∫ ∞

−∞
e−2πixξ sinπa

coshπx+ cosπa
dx =

2 sinh 2πaξ
sinh 2πξ

whenever 0 < a < 1, and where sinh z = (ez − e−z)/2. We have proved
above the particular case a = 1/2. This identity can be used to determine
an explicit formula for the Poisson kernel for the strip (see Problem 3 in
Chapter 5 of Book I), or to prove the sum of two squares theorem, as we
shall see in Chapter 10.

3 Singularities and meromorphic functions

Returning to Section 1, we see that we have described the analytical
character of a function near a pole. We now turn our attention to the
other types of isolated singularities.
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Let f be a function holomorphic in an open set Ω except possibly at
one point z0 in Ω. If we can define f at z0 in such a way that f becomes
holomorphic in all of Ω, we say that z0 is a removable singularity for f .

Theorem 3.1 (Riemann’s theorem on removable singularities)
Suppose that f is holomorphic in an open set Ω except possibly at a point
z0 in Ω. If f is bounded on Ω − {z0}, then z0 is a removable singularity.

Proof. Since the problem is local we may consider a small disc D
centered at z0 and whose closure is contained in Ω. Let C denote the
boundary circle of that disc with the usual positive orientation. We
shall prove that if z ∈ D and z �= z0, then under the assumptions of the
theorem we have

(4) f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ.

Since an application of Theorem 5.4 in the previous chapter proves that
the right-hand side of equation (4) defines a holomorphic function on
all of D that agrees with f(z) when z �= z0, this give us the desired
extension.

To prove formula (4) we fix z ∈ D with z �= z0 and use the familiar toy
contour illustrated in Figure 4.

z0

z

Figure 4. The multiple keyhole contour in the proof of Riemann’s the-
orem

The multiple keyhole avoids the two points z and z0. Letting the sides
of the corridors get closer to each other, and finally overlap, in the limit
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we get a cancellation:∫
C

f(ζ)
ζ − z

dζ +
∫

γε

f(ζ)
ζ − z

dζ +
∫

γ′
ε

f(ζ)
ζ − z

dζ = 0 ,

where γε and γ′ε are small circles of radius ε with negative orientation
and centered at z and z0 respectively. Copying the argument used in the
proof of the Cauchy integral formula in Section 4 of Chapter 2, we find
that ∫

γε

f(ζ)
ζ − z

dζ = −2πif(z).

For the second integral, we use the assumption that f is bounded and
that since ε is small, ζ stays away from z, and therefore∣∣∣∣∣

∫
γ′

ε

f(ζ)
ζ − z

dζ

∣∣∣∣∣ ≤ Cε.

Letting ε tend to 0 proves our contention and concludes the proof of the
extension formula (4).

Surprisingly, we may deduce from Riemann’s theorem a characteriza-
tion of poles in terms of the behavior of the function in a neighborhood
of a singularity.

Corollary 3.2 Suppose that f has an isolated singularity at the point
z0. Then z0 is a pole of f if and only if |f(z)| → ∞ as z → z0.

Proof. If z0 is a pole, then we know that 1/f has a zero at z0, and
therefore |f(z)| → ∞ as z → z0. Conversely, suppose that this condition
holds. Then 1/f is bounded near z0, and in fact 1/|f(z)| → 0 as z → z0.
Therefore, 1/f has a removable singularity at z0 and must vanish there.
This proves the converse, namely that z0 is a pole.

Isolated singularities belong to one of three categories:

• Removable singularities (f bounded near z0)

• Pole singularities (|f(z)| → ∞ as z → z0)

• Essential singularities.

By default, any singularity that is not removable or a pole is defined
to be an essential singularity. For example, the function e1/z dis-
cussed at the very beginning of Section 1 has an essential singularity at
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0. We already observed the wild behavior of this function near the ori-
gin. Contrary to the controlled behavior of a holomorphic function near
a removable singularity or a pole, it is typical for a holomorphic function
to behave erratically near an essential singularity. The next theorem
clarifies this.

Theorem 3.3 (Casorati-Weierstrass) Suppose f is holomorphic in
the punctured disc Dr(z0) − {z0} and has an essential singularity at z0.
Then, the image of Dr(z0) − {z0} under f is dense in the complex plane.

Proof. We argue by contradiction. Assume that the range of f is not
dense, so that there exists w ∈ C and δ > 0 such that

|f(z)− w| > δ for all z ∈ Dr(z0) − {z0}.

We may therefore define a new function on Dr(z0) − {z0} by

g(z) =
1

f(z) − w
,

which is holomorphic on the punctured disc and bounded by 1/δ. Hence
g has a removable singularity at z0 by Theorem 3.1. If g(z0) �= 0, then
f(z) − w is holomorphic at z0, which contradicts the assumption that z0
is an essential singularity. In the case that g(z0) = 0, then f(z) − w has
a pole at z0 also contradicting the nature of the singularity at z0. The
proof is complete.

In fact, Picard proved a much stronger result. He showed that under
the hypothesis of the above theorem, the function f takes on every com-
plex value infinitely many times with at most one exception. Although
we shall not give a proof of this remarkable result, a simpler version of
it will follow from our study of entire functions in a later chapter. See
Exercise 11 in Chapter 5.

We now turn to functions with only isolated singularities that are
poles. A function f on an open set Ω is meromorphic if there exists a
sequence of points {z0, z1, z2, . . .} that has no limit points in Ω, and such
that

(i) the function f is holomorphic in Ω − {z0, z1, z2, . . .}, and

(ii) f has poles at the points {z0, z1, z2, . . .}.

It is also useful to discuss functions that are meromorphic in the ex-
tended complex plane. If a function is holomorphic for all large values of
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z, we can describe its behavior at infinity using the tripartite distinction
we have used to classify singularities at finite values of z. Thus, if f is
holomorphic for all large values of z, we consider F (z) = f(1/z), which
is now holomorphic in a deleted neighborhood of the origin. We say that
f has a pole at infinity if F has a pole at the origin. Similarly, we
can speak of f having an essential singularity at infinity, or a re-
movable singularity (hence holomorphic) at infinity in terms of the
corresponding behavior of F at 0. A meromorphic function in the com-
plex plane that is either holomorphic at infinity or has a pole at infinity
is said to be meromorphic in the extended complex plane.

At this stage we return to the principle mentioned at the beginning of
the chapter. Here we can see it in its simplest form.

Theorem 3.4 The meromorphic functions in the extended complex plane
are the rational functions.

Proof. Suppose that f is meromorphic in the extended plane. Then
f(1/z) has either a pole or a removable singularity at 0, and in either
case it must be holomorphic in a deleted neighborhood of the origin, so
that the function f can have only finitely many poles in the plane, say
at z1, . . . , zn. The idea is to subtract from f its principal parts at all its
poles including the one at infinity. Near each pole zk ∈ C we can write

f(z) = fk(z) + gk(z) ,

where fk(z) is the principal part of f at zk and gk is holomorphic in a
(full) neighborhood of zk. In particular, fk is a polynomial in 1/(z − zk).
Similarly, we can write

f(1/z) = f̃∞(z) + g̃∞(z) ,

where g̃∞ is holomorphic in a neighborhood of the origin and f̃∞ is the
principal part of f(1/z) at 0, that is, a polynomial in 1/z. Finally, let
f∞(z) = f̃∞(1/z).

We contend that the function H = f − f∞ −
∑n

k=1 fk is entire and
bounded. Indeed, near the pole zk we subtracted the principal part of f
so that the function H has a removable singularity there. Also, H(1/z)
is bounded for z near 0 since we subtracted the principal part of the
pole at ∞. This proves our contention, and by Liouville’s theorem we
conclude that H is constant. From the definition of H, we find that f is
a rational function, as was to be shown.

Note that as a consequence, a rational function is determined up to a
multiplicative constant by prescribing the locations and multiplicities of
its zeros and poles.
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The Riemann sphere

The extended complex plane, which consists of C and the point at infinity,
has a convenient geometric interpretation, which we briefly discuss here.

Consider the Euclidean space R3 with coordinates (X,Y, Z) where the
XY -plane is identified with C. We denote by S the sphere centered at
(0, 0, 1/2) and of radius 1/2; this sphere is of unit diameter and lies on
top of the origin of the complex plane as pictured in Figure 5. Also, we
let N = (0, 0, 1) denote the north pole of the sphere.

N

w

W

S

C

0

Figure 5. The Riemann sphere S and stereographic projection

Given any point W = (X,Y, Z) on S different from the north pole, the
line joining N and W intersects the XY -plane in a single point which
we denote by w = x+ iy; w is called the stereographic projection of
W (see Figure 5). Conversely, given any point w in C, the line joining
N and w = (x, y, 0) intersects the sphere at N and another point, which
we call W . This geometric construction gives a bijective correspondence
between points on the punctured sphere S − {N} and the complex plane;
it is described analytically by the formulas

x =
X

1 − Z
and y =

Y

1 − Z
,

giving w in terms of W , and

X =
x

x2 + y2 + 1
, Y =

y

x2 + y2 + 1
, and Z =

x2 + y2

x2 + y2 + 1

giving W in terms of w. Intuitively, we have wrapped the complex plane
onto the punctured sphere S − {N}.
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As the point w goes to infinity in C (in the sense that |w| → ∞) the
corresponding point W on S comes arbitrarily close to N . This simple
observation makes N a natural candidate for the so-called “point at
infinity.” Identifying infinity with the point N on S, we see that the
extended complex plane can be visualized as the full two-dimensional
sphere S; this is the Riemann sphere. Since this construction takes
the unbounded set C into the compact set S by adding one point, the
Riemann sphere is sometimes called the one-point compactification
of C.

An important consequence of this interpretation is the following: al-
though the point at infinity required special attention when considered
separately from C, it now finds itself on equal footing with all other points
on S. In particular, a meromorphic function on the extended complex
plane can be thought of as a map from S to itself, where the image of a
pole is now a tractable point on S, namely N . For these reasons (and
others) the Riemann sphere provides good geometrical insight into the
structure of C as well as the theory of meromorphic functions.

4 The argument principle and applications

We anticipate our discussion of the logarithm (in Section 6) with a few
comments. In general, the function log f(z) is “multiple-valued” because
it cannot be defined unambiguously on the set where f(z) �= 0. However
it is to be defined, it must equal log |f(z)| + i arg f(z), where log |f(z)|
is the usual real-variable logarithm of the positive quantity |f(z)| (and
hence is defined unambiguously), while arg f(z) is some determination
of the argument (up to an additive integral multiple of 2π). Note that in
any case, the derivative of log f(z) is f ′(z)/f(z) which is single-valued,
and the integral ∫

γ

f ′(z)
f(z)

dz

can be interpreted as the change in the argument of f as z traverses
the curve γ. Moreover, assuming the curve is closed, this change of
argument is determined entirely by the zeros and poles of f inside γ. We
now formulate this fact as a precise theorem.

We begin with the observation that while the additivity formula

log(f1f2) = log f1 + log f2

fails in general (as we shall see below), the additivity can be restored
to the corresponding derivatives. This is confirmed by the following
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observation:

(f1f2)′

f1f2
=
f ′1f2 + f1f

′
2

f1f2
=
f ′1
f1

+
f ′2
f2
,

which generalizes to (∏N
k=1 fk

)′
∏N

k=1 fk

=
N∑

k=1

f ′k
fk
.

We apply this formula as follows. If f is holomorphic and has a zero
of order n at z0, we can write

f(z) = (z − z0)ng(z) ,

where g is holomorphic and nowhere vanishing in a neighborhood of z0,
and therefore

f ′(z)
f(z)

=
n

z − z0
+G(z)

where G(z) = g′(z)/g(z). The conclusion is that if f has a zero of order
n at z0, then f ′/f has a simple pole with residue n at z0. Observe
that a similar fact also holds if f has a pole of order n at z0, that is, if
f(z) = (z − z0)−nh(z). Then

f ′(z)
f(z)

=
−n
z − z0

+H(z).

Therefore, if f is meromorphic, the function f ′/f will have simple poles
at the zeros and poles of f , and the residue is simply the order of the
zero of f or the negative of the order of the pole of f . As a result, an
application of the residue formula gives the following theorem.

Theorem 4.1 (Argument principle) Suppose f is meromorphic in
an open set containing a circle C and its interior. If f has no poles
and never vanishes on C, then

1
2πi

∫
C

f ′(z)
f(z)

dz = (number of zeros of f inside C) minus

(number of poles of f inside C),

where the zeros and poles are counted with their multiplicities.

Corollary 4.2 The above theorem holds for toy contours.
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As an application of the argument principle, we shall prove three the-
orems of interest in the general theory. The first, Rouché’s theorem, is
in some sense a continuity statement. It says that a holomorphic func-
tion can be perturbed slightly without changing the number of its zeros.
Then, we prove the open mapping theorem, which states that holomor-
phic functions map open sets to open sets, an important property that
again shows the special nature of holomorphic functions. Finally, the
maximum modulus principle is reminiscent of (and in fact implies) the
same property for harmonic functions: a non-constant holomorphic func-
tion on an open set Ω cannot attain its maximum in the interior of Ω.

Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
morphic in an open set containing a circle C and its interior. If

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros inside the circle C.

Proof. For t ∈ [0, 1] define

ft(z) = f(z) + tg(z)

so that f0 = f and f1 = f + g. Let nt denote the number of zeros of ft

inside the circle counted with multiplicities, so that in particular, nt is
an integer. The condition |f(z)| > |g(z)| for z ∈ C clearly implies that
ft has no zeros on the circle, and the argument principle implies

nt =
1

2πi

∫
C

f ′t(z)
ft(z)

dz.

To prove that nt is constant, it suffices to show that it is a continu-
ous function of t. Then we could argue that if nt were not constant,
the intermediate value theorem would guarantee the existence of some
t0 ∈ [0, 1] with nt0 not integral, contradicting the fact that nt ∈ Z for
all t.

To prove the continuity of nt, we observe that f ′t(z)/ft(z) is jointly
continuous for t ∈ [0, 1] and z ∈ C. This joint continuity follows from
the fact that it holds for both the numerator and denominator, and our
assumptions guarantee that ft(z) does not vanish on C. Hence nt is
integer-valued and continuous, and it must be constant. We conclude
that n0 = n1, which is Rouché’s theorem.

We now come to an important geometric property of holomorphic func-
tions that arises when we consider them as mappings (that is, mapping
regions in the complex plane to the complex plane).

A mapping is said to be open if it maps open sets to open sets.
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Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region Ω, then f is open.

Proof. Let w0 belong to the image of f , say w0 = f(z0). We must
prove that all points w near w0 also belong to the image of f .

Define g(z) = f(z) − w and write

g(z) = (f(z) − w0) + (w0 − w)
= F (z) +G(z).

Now choose δ > 0 such that the disc |z − z0| ≤ δ is contained in Ω and
f(z) �= w0 on the circle |z − z0| = δ. We then select ε > 0 so that we
have |f(z)− w0| ≥ ε on the circle |z − z0| = δ. Now if |w − w0| < ε we
have |F (z)| > |G(z)| on the circle |z − z0| = δ, and by Rouché’s theorem
we conclude that g = F +G has a zero inside the circle since F has one.

The next result pertains to the size of a holomorphic function. We
shall refer to the maximum of a holomorphic function f in an open set
Ω as the maximum of its absolute value |f | in Ω.

Theorem 4.5 (Maximum modulus principle) If f is a non-constant
holomorphic function in a region Ω, then f cannot attain a maximum in
Ω.

Proof. Suppose that f did attain a maximum at z0. Since f is
holomorphic it is an open mapping, and therefore, ifD ⊂ Ω is a small disc
centered at z0, its image f(D) is open and contains f(z0). This proves
that there are points in z ∈ D such that |f(z)| > |f(z0)|, a contradiction.

Corollary 4.6 Suppose that Ω is a region with compact closure Ω. If f
is holomorphic on Ω and continuous on Ω then

sup
z∈Ω

|f(z)| ≤ sup
z∈Ω−Ω

|f(z)|.

In fact, since f(z) is continuous on the compact set Ω, then |f(z)|
attains its maximum in Ω; but this cannot be in Ω if f is non-constant.
If f is constant, the conclusion is trivial.

Remark. The hypothesis that Ω is compact (that is, bounded) is es-
sential for the conclusion. We give an example related to considerations
that we will take up in Chapter 4. Let Ω be the open first quadrant,
bounded by the positive half-line x ≥ 0 and the corresponding imagi-
nary line y ≥ 0. Consider F (z) = e−iz2

. Then F is entire and clearly
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continuous on Ω. Moreover |F (z)| = 1 on the two boundary lines z = x
and z = iy. However, F (z) is unbounded in Ω, since for example, we
have F (z) = er2

if z = r
√
i = reiπ/4.

5 Homotopies and simply connected domains

The key to the general form of Cauchy’s theorem, as well as the analysis of
multiple-valued functions, is to understand in what regions we can define
the primitive of a given holomorphic function. Note the relevance to the
study of the logarithm, which arises as a primitive of 1/z. The question is
not just a local one, but is also global in nature. Its elucidation requires
the notion of homotopy, and the resulting idea of simple-connectivity.

Let γ0 and γ1 be two curves in an open set Ω with common end-points.
So if γ0(t) and γ1(t) are two parametrizations defined on [a, b], we have

γ0(a) = γ1(a) = α and γ0(b) = γ1(b) = β.

These two curves are said to be homotopic in Ω if for each 0 ≤ s ≤ 1
there exists a curve γs ⊂ Ω, parametrized by γs(t) defined on [a, b], such
that for every s

γs(a) = α and γs(b) = β,

and for all t ∈ [a, b]

γs(t)|s=0 = γ0(t) and γs(t)|s=1 = γ1(t).

Moreover, γs(t) should be jointly continuous in s ∈ [0, 1] and t ∈ [a, b].
Loosely speaking, two curves are homotopic if one curve can be de-

formed into the other by a continuous transformation without ever leav-
ing Ω (Figure 6).

Theorem 5.1 If f is holomorphic in Ω, then∫
γ0

f(z) dz =
∫

γ1

f(z) dz

whenever the two curves γ0 and γ1 are homotopic in Ω.

Proof. The key to the proof lies in showing that if two curves are close
to each other and have the same end-points, then the integrals over these
curves are equal. Recall that by definition, the function F (s, t) = γs(t) is
continuous on [0, 1] × [a, b]. In particular, since the image of F , which we
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α

β

γs

γ1

Ω

γ0

Figure 6. Homotopy of curves

denote by K, is compact, there exists ε > 0 such that every disc of radius
3ε centered at a point in the image of F is completely contained in Ω. If
not, for every � ≥ 0, there exist points z ∈ K and w in the complement
of Ω such that |z − w| < 1/�. By compactness of K, there exists a
subsequence of {z}, say {zk

}, that converges to a point z ∈ K ⊂ Ω. By
construction, we must have wk

→ z as well, and since {w} lies in the
complement of Ω which is closed, we must have z ∈ Ωc as well. This is a
contradiction.

Having found an ε with the desired property, we may, by the uniform
continuity of F , select δ so that

sup
t∈[a,b]

|γs1(t) − γs2(t)| < ε whenever |s1 − s2| < δ.

Fix s1 and s2 with |s1 − s2| < δ. We then choose discs {D0, . . . , Dn} of
radius 2ε, and consecutive points {z0, . . . , zn+1} on γs1 and {w0, . . . , wn+1}
on γs2 such that the union of these discs covers both curves, and

zi, zi+1, wi, wi+1 ∈ Di.

The situation is illustrated in Figure 7.
Also, we choose z0 = w0 as the beginning end-point of the curves and

zn+1 = wn+1 as the common end-point. On each disc Di, let Fi denote a
primitive of f (Theorem 2.1, Chapter 2). On the intersection of Di and
Di+1, Fi and Fi+1 are two primitives of the same function, so they must
differ by a constant, say ci. Therefore

Fi+1(zi+1) − Fi(zi+1) = Fi+1(wi+1) − Fi(wi+1),
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z5 = w5

z0 = w0

w1

w2

z3

z4

D0

D1

D2

D3

D4

z1

z2

w3

w4

Figure 7. Covering two nearby curves with discs

hence

(5) Fi+1(zi+1) − Fi+1(wi+1) = Fi(zi+1) − Fi(wi+1).

This implies∫
γs1

f −
∫

γs2

f =
n∑

i=0

[Fi(zi+1) − Fi(zi)] −
n∑

i=0

[Fi(wi+1) − Fi(wi)]

=
n∑

i=0

Fi(zi+1) − Fi(wi+1) − (Fi(zi) − Fi(wi))

= Fn(zn+1) − Fn(wn+1) − (F0(z0) − F0(w0)) ,

because of the cancellations due to (5). Since γs1 and γs2 have the same
beginning and end point, we have proved that∫

γs1

f =
∫

γs2

f.

By subdividing [0, 1] into subintervals [si, si+1] of length less than δ, we
may go from γ0 to γ1 by finitely many applications of the above argument,
and the theorem is proved.
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A region Ω in the complex plane is simply connected if any two pair
of curves in Ω with the same end-points are homotopic.

Example 1. A disc D is simply connected. In fact, if γ0(t) and γ1(t)
are two curves lying in D, we can define γs(t) by

γs(t) = (1 − s)γ0(t) + sγ1(t).

Note that if 0 ≤ s ≤ 1, then for each t, the point γs(t) is on the segment
joining γ0(t) and γ1(t), and so is in D. The same argument works if D is
replaced by a rectangle, or more generally by any open convex set. (See
Exercise 21.)

Example 2. The slit plane Ω = C − {(−∞, 0]} is simply connected. For
a pair of curves γ0 and γ1 in Ω, we write γj(t) = rj(t)eiθj(t) (j = 0, 1)
with rj(t) continuous and strictly positive, and θj(t) continuous with
|θj(t)| < π. Then, we can define γs(t) as rs(t)eiθs(t) where

rs(t) = (1 − s)r0(t) + sr1(t) and θs(t) = (1 − s)θ0(t) + sθ1(t).

We then have γs(t) ∈ Ω whenever 0 ≤ s ≤ 1.

Example 3. With some effort one can show that the interior of a toy
contour is simply connected. This requires that we divide the interior into
several subregions. A general form of the argument is given in Exercise 4.

Example 4. In contrast with the previous examples, the punctured
plane C − {0} is not simply connected. Intuitively, consider two curves
with the origin between them. It is impossible to continuously pass from
one curve to the other without going over 0. A rigorous proof of this fact
requires one further result, and will be given shortly.

Theorem 5.2 Any holomorphic function in a simply connected domain
has a primitive.

Proof. Fix a point z0 in Ω and define

F (z) =
∫

γ

f(w) dw

where the integral is taken over any curve in Ω joining z0 to z. This
definition is independent of the curve chosen, since Ω is simply connected,
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and if γ̃ is another curve in Ω joining z0 and z, we would have∫
γ

f(w) dw =
∫

γ̃

f(w) dw

by Theorem 5.1. Now we can write

F (z + h) − F (z) =
∫

η

f(w) dw

where η is the line segment joining z and z + h. Arguing as in the proof
of Theorem 2.1 in Chapter 2, we find that

lim
h→0

F (z + h) − F (z)
h

= f(z).

As a result, we obtain the following version of Cauchy’s theorem.

Corollary 5.3 If f is holomorphic in the simply connected region Ω,
then ∫

γ

f(z) dz = 0

for any closed curve γ in Ω.

This is immediate from the existence of a primitive.

The fact that the punctured plane is not simply connected now follows
rigorously from the observation that the integral of 1/z over the unit
circle is 2πi, and not 0.

6 The complex logarithm

Suppose we wish to define the logarithm of a non-zero complex num-
ber. If z = reiθ, and we want the logarithm to be the inverse to the
exponential, then it is natural to set

log z = log r + iθ.

Here and below, we use the convention that log r denotes the standard1

logarithm of the positive number r. The trouble with the above defini-
tion is that θ is unique only up to an integer multiple of 2π. However,

1By the standard logarithm, we mean the natural logarithm of positive numbers that
appears in elementary calculus.
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for given z we can fix a choice of θ, and if z varies only a little, this
determines the corresponding choice of θ uniquely (assuming we require
that θ varies continuously with z). Thus “locally” we can give an unam-
biguous definition of the logarithm, but this will not work “globally.” For
example, if z starts at 1, and then winds around the origin and returns
to 1, the logarithm does not return to its original value, but rather differs
by an integer multiple of 2πi, and therefore is not “single-valued.” To
make sense of the logarithm as a single-valued function, we must restrict
the set on which we define it. This is the so-called choice of a branch
or sheet of the logarithm.

Our discussion of simply connected domains given above leads to a
natural global definition of a branch of the logarithm function.

Theorem 6.1 Suppose that Ω is simply connected with 1 ∈ Ω, and 0 /∈
Ω. Then in Ω there is a branch of the logarithm F (z) = logΩ(z) so that

(i) F is holomorphic in Ω,

(ii) eF (z) = z for all z ∈ Ω,

(iii) F (r) = log r whenever r is a real number and near 1.

In other words, each branch logΩ(z) is an extension of the standard
logarithm defined for positive numbers.

Proof. We shall construct F as a primitive of the function 1/z. Since
0 /∈ Ω, the function f(z) = 1/z is holomorphic in Ω. We define

logΩ(z) = F (z) =
∫

γ

f(w) dw ,

where γ is any curve in Ω connecting 1 to z. Since Ω is simply connected,
this definition does not depend on the path chosen. Arguing as in the
proof of Theorem 5.2, we find that F is holomorphic and F ′(z) = 1/z
for all z ∈ Ω. This proves (i). To prove (ii), it suffices to show that
ze−F (z) = 1. For that, we differentiate the left-hand side, obtaining

d

dz

(
ze−F (z)

)
= e−F (z) − zF ′(z)e−F (z) = (1 − zF ′(z))e−F (z) = 0.

Since Ω is connected we conclude, by Corollary 3.4 in Chapter 1, that
ze−F (z) is constant. Evaluating this expression at z = 1, and noting that
F (1) = 0, we find that this constant must be 1.

Finally, if r is real and close to 1 we can choose as a path from 1 to r
a line segment on the real axis so that

F (r) =
∫ r

1

dx

x
= log r,
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by the usual formula for the standard logarithm. This completes the
proof of the theorem.

For example, in the slit plane Ω = C − {(−∞, 0]} we have the princi-
pal branch of the logarithm

log z = log r + iθ

where z = reiθ with |θ| < π. (Here we drop the subscript Ω, and write
simply log z.) To prove this, we use the path of integration γ shown in
Figure 8.

0 1 r

z = reiθ

Figure 8. Path of integration for the principal branch of the logarithm

If z = reiθ with |θ| < π, the path consists of the line segment from 1
to r and the arc η from r to z. Then

log z =
∫ r

1

dx

x
+
∫

η

dw

w

= log r +
∫ θ

0

ireit

reit
dt

= log r + iθ.

An important observation is that in general

log(z1z2) �= log z1 + log z2.

For example, if z1 = e2πi/3 = z2, then for the principal branch of the
logarithm, we have

log z1 = log z2 =
2πi
3
,
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and since z1z2 = e−2πi/3 we have

−2πi
3

= log(z1z2) �= log z1 + log z2.

Finally, for the principal branch of the logarithm the following Taylor
expansion holds:

(6) log(1 + z) = z − z2

2
+
z3

3
− · · · = −

∞∑
n=1

(−1)n z
n

n
for |z| < 1.

Indeed, the derivative of both sides equals 1/(1 + z), so that they differ
by a constant. Since both sides are equal to 0 at z = 0 this constant
must be 0, and we have proved the desired Taylor expansion.

Having defined a logarithm on a simply connected domain, we can
now define the powers zα for any α ∈ C. If Ω is simply connected with
1 ∈ Ω and 0 /∈ Ω, we choose the branch of the logarithm with log 1 = 0
as above, and define

zα = eα log z.

Note that 1α = 1, and that if α = 1/n, then

(z1/n)n =
n∏

k=1

e
1
n log z = e

∑n
k=1

1
n log z = e

n
n log z = elog z = z.

We know that every non-zero complex number w can be written as
w = ez. A generalization of this fact is given in the next theorem, which
discusses the existence of log f(z) whenever f does not vanish.

Theorem 6.2 If f is a nowhere vanishing holomorphic function in a
simply connected region Ω, then there exists a holomorphic function g on
Ω such that

f(z) = eg(z).

The function g(z) in the theorem can be denoted by log f(z), and deter-
mines a “branch” of that logarithm.

Proof. Fix a point z0 in Ω, and define a function

g(z) =
∫

γ

f ′(w)
f(w)

dw + c0,
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where γ is any path in Ω connecting z0 to z, and c0 is a complex number
so that ec0 = f(z0). This definition is independent of the path γ since Ω
is simply connected. Arguing as in the proof of Theorem 2.1, Chapter 2,
we find that g is holomorphic with

g′(z) =
f ′(z)
f(z)

,

and a simple calculation gives

d

dz

(
f(z)e−g(z)

)
= 0 ,

so that f(z)e−g(z) is constant. Evaluating this expression at z0 we find
f(z0)e−c0 = 1, so that f(z) = eg(z) for all z ∈ Ω, and the proof is com-
plete.

7 Fourier series and harmonic functions

In Chapter 4 we shall describe some interesting connections between com-
plex function theory and Fourier analysis on the real line. The motivation
for this study comes in part from the simple and direct relation between
Fourier series on the circle and power series expansions of holomorphic
functions in the disc, which we now investigate.

Suppose that f is holomorphic in a disc DR(z0), so that f has a power
series expansion

f(z) =
∞∑

n=0

an(z − z0)n

that converges in that disc.

Theorem 7.1 The coefficients of the power series expansion of f are
given by

an =
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ

for all n ≥ 0 and 0 < r < R. Moreover,

0 =
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ

whenever n < 0.
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Proof. Since f (n)(z0) = ann!, the Cauchy integral formula gives

an =
1

2πi

∫
γ

f(ζ)
(ζ − z0)n+1

dζ ,

where γ is a circle of radius 0 < r < R centered at z0 and with the positive
orientation. Choosing ζ = z0 + reiθ for the parametrization of this circle,
we find that for n ≥ 0

an =
1

2πi

∫ 2π

0

f(z0 + reiθ)
(z0 + reiθ − z0)n+1

rieiθ dθ

=
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−i(n+1)θeiθ dθ

=
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ.

Finally, even when n < 0, our calculation shows that we still have the
identity

1
2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ =
1

2πi

∫
γ

f(ζ)
(ζ − z0)n+1

dζ.

Since −n > 0, the function f(ζ)(ζ − z0)−n−1 is holomorphic in the disc,
and by Cauchy’s theorem the last integral vanishes.

The interpretation of this theorem is as follows. Consider f(z0 + reiθ)
as the restriction to the circle of a holomorphic function on the closure
of a disc centered at z0 with radius r. Then its Fourier coefficients
vanish if n < 0, while those for n ≥ 0 are equal (up to a factor of rn)
to coefficients of the power series of the holomorphic function f . The
property of the vanishing of the Fourier coefficients for n < 0 reveals
another special characteristic of holomorphic functions (and in particular
their restrictions to any circle).

Next, since a0 = f(z0), we obtain the following corollary.

Corollary 7.2 (Mean-value property) If f is holomorphic in a disc
DR(z0), then

f(z0) =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ, for any 0 < r < R.

Taking the real parts of both sides, we obtain the following conse-
quence.
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Corollary 7.3 If f is holomorphic in a disc DR(z0), and u = Re(f),
then

u(z0) =
1
2π

∫ 2π

0

u(z0 + reiθ) dθ, for any 0 < r < R.

Recall that u is harmonic whenever f is holomorphic, and in fact, the
above corollary is a property enjoyed by every harmonic function in the
disc DR(z0). This follows from Exercise 12 in Chapter 2, which shows
that every harmonic function in a disc is the real part of a holomorphic
function in that disc.

8 Exercises

1. Using Euler’s formula

sin πz =
eiπz − e−iπz

2i
,

show that the complex zeros of sin πz are exactly at the integers, and that they
are each of order 1.

Calculate the residue of 1/ sin πz at z = n ∈ Z.

2. Evaluate the integral ∫ ∞

−∞

dx

1 + x4
.

Where are the poles of 1/(1 + z4)?

3. Show that ∫ ∞

−∞

cos x

x2 + a2
dx = π

e−a

a
, for a > 0.

4. Show that ∫ ∞

−∞

x sin x

x2 + a2
dx = πe−a, for all a > 0.

5. Use contour integration to show that∫ ∞

−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|)e−2π|ξ|

for all ξ real.
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6. Show that ∫ ∞

−∞

dx

(1 + x2)n+1
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· π.

7. Prove that ∫ 2π

0

dθ

(a+ cos θ)2
=

2πa

(a2 − 1)3/2
, whenever a > 1.

8. Prove that ∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

if a > |b| and a, b ∈ R.

9. Show that ∫ 1

0

log(sin πx) dx = − log 2.

[Hint: Use the contour shown in Figure 9.]

0 1

Figure 9. Contour in Exercise 9

10. Show that if a > 0, then∫ ∞

0

log x

x2 + a2
dx =

π

2a
log a.

[Hint: Use the contour in Figure 10.]

11. Show that if |a| < 1, then∫ 2π

0

log |1 − aeiθ| dθ = 0.
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−R R−ε

ia

ε

Figure 10. Contour in Exercise 10

Then, prove that the above result remains true if we assume only that |a| ≤ 1.

12. Suppose u is not an integer. Prove that

∞∑
n=−∞

1

(u+ n)2
=

π2

(sin πu)2

by integrating

f(z) =
π cotπz

(u+ z)2

over the circle |z| = RN = N + 1/2 (N integral, N ≥ |u|), adding the residues of
f inside the circle, and letting N tend to infinity.
Note. Two other derivations of this identity, using Fourier series, were given in
Book I.

13. Suppose f(z) is holomorphic in a punctured disc Dr(z0) − {z0}. Suppose also
that

|f(z)| ≤ A|z − z0|−1+ε

for some ε > 0, and all z near z0. Show that the singularity of f at z0 is removable.

14. Prove that all entire functions that are also injective take the form
f(z) = az + b with a, b ∈ C, and a 
= 0.

[Hint: Apply the Casorati-Weierstrass theorem to f(1/z).]

15. Use the Cauchy inequalities or the maximum modulus principle to solve the
following problems:

(a) Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ≤ ARk +B
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for all R > 0, and for some integer k ≥ 0 and some constants A,B > 0, then
f is a polynomial of degree ≤ k.

(b) Show that if f is holomorphic in the unit disc, is bounded, and converges
uniformly to zero in the sector θ < arg z < ϕ as |z| → 1, then f = 0.

(c) Let w1, . . . , wn be points on the unit circle in the complex plane. Prove that
there exists a point z on the unit circle such that the product of the distances
from z to the points wj , 1 ≤ j ≤ n, is at least 1. Conclude that there exists
a point w on the unit circle such that the product of the distances from w
to the points wj , 1 ≤ j ≤ n, is exactly equal to 1.

(d) Show that if the real part of an entire function f is bounded, then f is
constant.

16. Suppose f and g are holomorphic in a region containing the disc |z| ≤ 1.
Suppose that f has a simple zero at z = 0 and vanishes nowhere else in |z| ≤ 1.
Let

fε(z) = f(z) + εg(z).

Show that if ε is sufficiently small, then

(a) fε(z) has a unique zero in |z| ≤ 1, and

(b) if zε is this zero, the mapping ε �→ zε is continuous.

17. Let f be non-constant and holomorphic in an open set containing the closed
unit disc.

(a) Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the
unit disc. [Hint: One must show that f(z) = w0 has a root for every w0 ∈ D.
To do this, it suffices to show that f(z) = 0 has a root (why?). Use the
maximum modulus principle to conclude.]

(b) If |f(z)| ≥ 1 whenever |z| = 1 and there exists a point z0 ∈ D such that
|f(z0)| < 1, then the image of f contains the unit disc.

18. Give another proof of the Cauchy integral formula

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

using homotopy of curves.

[Hint: Deform the circle C to a small circle centered at z, and note that the
quotient (f(ζ) − f(z))/(ζ − z) is bounded.]

19. Prove the maximum principle for harmonic functions, that is:
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(a) If u is a non-constant real-valued harmonic function in a region Ω, then u
cannot attain a maximum (or a minimum) in Ω.

(b) Suppose that Ω is a region with compact closure Ω. If u is harmonic in Ω
and continuous in Ω, then

sup
z∈Ω

|u(z)| ≤ sup
z∈Ω−Ω

|u(z)|.

[Hint: To prove the first part, assume that u attains a local maximum at z0. Let f
be holomorphic near z0 with u = Re(f), and show that f is not open. The second
part follows directly from the first.]

20. This exercise shows how the mean square convergence dominates the uniform
convergence of analytic functions. If U is an open subset of C we use the notation

‖f‖L2(U) =

(∫
U

|f(z)|2 dxdy
)1/2

for the mean square norm, and

‖f‖L∞(U) = sup
z∈U

|f(z)|

for the sup norm.

(a) If f is holomorphic in a neighborhood of the disc Dr(z0), show that for any
0 < s < r there exists a constant C > 0 (which depends on s and r) such
that

‖f‖L∞(Ds(z0)) ≤ C‖f‖L2(Dr(z0)) .

(b) Prove that if {fn} is a Cauchy sequence of holomorphic functions in the
mean square norm ‖ · ‖L2(U), then the sequence {fn} converges uniformly
on every compact subset of U to a holomorphic function.

[Hint: Use the mean-value property.]

21. Certain sets have geometric properties that guarantee they are simply con-
nected.

(a) An open set Ω ⊂ C is convex if for any two points in Ω, the straight line
segment between them is contained in Ω. Prove that a convex open set is
simply connected.

(b) More generally, an open set Ω ⊂ C is star-shaped if there exists a point
z0 ∈ Ω such that for any z ∈ Ω, the straight line segment between z and z0
is contained in Ω. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C − {(−∞, 0]} (and more generally any sector,
convex or not) is simply connected.
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(c) What are other examples of open sets that are simply connected?

22. Show that there is no holomorphic function f in the unit disc D that extends
continuously to ∂D such that f(z) = 1/z for z ∈ ∂D.

9 Problems

1.∗ Consider a holomorphic map on the unit disc f : D → C which satisfies
f(0) = 0. By the open mapping theorem, the image f(D) contains a small disc
centered at the origin. We then ask: does there exist r > 0 such that for all
f : D → C with f(0) = 0, we have Dr(0) ⊂ f(D)?

(a) Show that with no further restrictions on f , no such r exists. It suffices to
find a sequence of functions {fn} holomorphic in D such that 1/n /∈ f(D).
Compute f ′

n(0), and discuss.

(b) Assume in addition that f also satisfies f ′(0) = 1. Show that despite this
new assumption, there exists no r > 0 satisfying the desired condition.

[Hint: Try fε(z) = ε(ez/ε − 1).]

The Koebe-Bieberbach theorem states that if in addition to f(0) = 0 and
f ′(0) = 1 we also assume that f is injective, then such an r exists and the best
possible value is r = 1/4.

(c) As a first step, show that if h(z) = 1
z

+ c0 + c1z + c2z
2 + · · · is analytic and

injective for 0 < |z| < 1, then
∑∞

n=1 n|cn|2 ≤ 1.

[Hint: Calculate the area of the complement of h(Dρ(0) − {0}) where
0 < ρ < 1, and let ρ→ 1.]

(d) If f(z) = z + a2z
2 + · · · satisfies the hypotheses of the theorem, show that

there exists another function g satisfying the hypotheses of the theorem such
that g2(z) = f(z2).

[Hint: f(z)/z is nowhere vanishing so there exists ψ such that
ψ2(z) = f(z)/z and ψ(0) = 1. Check that g(z) = zψ(z2) is injective.]

(e) With the notation of the previous part, show that |a2| ≤ 2, and that equality
holds if and only if

f(z) =
z

(1 − eiθz)2
for some θ ∈ R.

[Hint: What is the power series expansion of 1/g(z)? Use part (c).]

(f) If h(z) = 1
z

+ c0 + c1z + c2z
2 + · · · is injective on D and avoids the values

z1 and z2, show that |z1 − z2| ≤ 4.

[Hint: Look at the second coefficient in the power series expansion of
1/(h(z) − zj).]



9. Problems 109

(g) Complete the proof of the theorem. [Hint: If f avoids w, then 1/f avoids 0
and 1/w.]

2. Let u be a harmonic function in the unit disc that is continuous on its closure.
Deduce Poisson’s integral formula

u(z0) =
1

2π

∫ 2π

0

1 − |z0|2
|eiθ − z0|2 u(e

iθ) dθ for |z0| < 1

from the special case z0 = 0 (the mean value theorem). Show that if z0 = reiϕ,
then

1 − |z0|2
|eiθ − z0|2 =

1 − r2

1 − 2r cos(θ − ϕ) + r2
= Pr(θ − ϕ),

and we recover the expression for the Poisson kernel derived in the exercises of the
previous chapter.

[Hint: Set u0(z) = u(T (z)) where

T (z) =
z0 − z

1 − z0z
.

Prove that u0 is harmonic. Then apply the mean value theorem to u0, and make
a change of variables in the integral.]

3. If f(z) is holomorphic in the deleted neighborhood {0 < |z − z0| < r} and has
a pole of order k at z0, then we can write

f(z) =
a−k

(z − z0)k
+ · · · + a−1

(z − z0)
+ g(z)

where g is holomorphic in the disc {|z − z0| < r}. There is a generalization of this
expansion that holds even if z0 is an essential singularity. This is a special case of
the Laurent series expansion, which is valid in an even more general setting.

Let f be holomorphic in a region containing the annulus {z : r1 ≤ |z − z0| ≤ r2}
where 0 < r1 < r2. Then,

f(z) =
∞∑

n=−∞
an(z − z0)

n

where the series converges absolutely in the interior of the annulus. To prove this,
it suffices to write

f(z) =
1

2πi

∫
Cr2

f(ζ)

ζ − z
dζ − 1

2πi

∫
Cr1

f(ζ)

ζ − z
dζ

when r1 < |z − z0| < r2, and argue as in the proof of Theorem 4.4, Chapter 2.
Here Cr1 and Cr2 are the circles bounding the annulus.
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4.∗ Suppose Ω is a bounded region. Let L be a (two-way infinite) line that intersects
Ω. Assume that Ω ∩ L is an interval I . Choosing an orientation for L, we can define
Ωl and Ωr to be the subregions of Ω lying strictly to the left or right of L, with
Ω = Ωl ∪ I ∪ Ωr a disjoint union. If Ωl and Ωr are simply connected, then Ω is
simply connected.

5.∗ Let

g(z) =
1

2πi

∫ M

−M

h(x)

x− z
dx

where h is continuous and supported in [−M,M ].

(a) Prove that the function g is holomorphic in C − [−M,M ], and vanishes
at infinity, that is, lim|z|→∞ |g(z)| = 0. Moreover, the “jump” of g across
[−M,M ] is h, that is,

h(x) = lim
ε→0,ε>0

g(x+ iε) − g(x− iε).

[Hint: Express the difference g(x+ iε) − g(x− iε) in terms of a convolution
of h with the Poisson kernel.]

(b) If h satisfies a mild smoothness condition, for instance a Hölder condition
with exponent α, that is, |h(x) − h(y)| ≤ C|x− y|α for some C > 0 and all
x, y ∈ [−M,M ], then g(x+ iε) and g(x− iε) converge uniformly to functions
g+(x) and g−(x) as ε→ 0. Then, g can be characterized as the unique
holomorphic function that satisfies:

(i) g is holomorphic outside [−M,M ],

(ii) g vanishes at infinity,

(iii) g(x+ iε) and g(x− iε) converge uniformly as ε → 0 to functions g+(x)
and g−(x) with

g+(x) − g−(x) = h(x).

[Hint: If G is another function satisfying these conditions, g −G is entire.]



4 The Fourier Transform

Raymond Edward Alan Christopher Paley, Fellow of
Trinity College, Cambridge, and International Research
Fellow at the Massachusetts Institute of Technology
and at Harvard University, was killed by an avalanche
on April 7, 1933, while skiing in the vicinity of Banff,
Alberta. Although only twenty-six years of age, he
was already recognized as the ablest of the group of
young English mathematicians who have been inspired
by the genius of G. H. Hardy and J. E. Littlewood. In
a group notable for its brilliant technique, no one had
developed this technique to a higher degree than Pa-
ley. Nevertheless he should not be thought of primar-
ily as a technician, for with this ability he combined
creative power of the first order. As he himself was
wont to say, technique without “rugger tactics” will
not get one far, and these rugger tactics he practiced
to a degree that was characteristic of his forthright
and vigorous nature.

Possessed of an extraordinary capacity for mak-
ing friends and for scientific collaboration, Paley be-
lieved that the inspiration of continual interchange of
ideas stimulates each collaborator to accomplish more
than he would alone. Only the exceptional man works
well with a partner, but Paley had collaborated suc-
cessfully with many, including Littlewood, Pólya, Zyg-
mund, and Wiener.

N. Wiener, 1933

If f is a function on R that satisfies appropriate regularity and decay
conditions, then its Fourier transform is defined by

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx, ξ ∈ R

and its counterpart, the Fourier inversion formula, holds

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ, x ∈ R.

The Fourier transform (including its d-dimensional variants), plays a ba-
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sic role in analysis, as the reader of Book I is aware. Here we want to illus-
trate the intimate and fruitful connection between the one-dimensional
theory of the Fourier transform and complex analysis. The main theme
(stated somewhat imprecisely) is as follows: for a function f initially
defined on the real line, the possibility of extending it to a holomorphic
function is closely related to the very rapid (for example, exponential)
decay at infinity of its Fourier transform f̂ . We elaborate on this theme
in two stages.

First, we assume that f can be analytically continued in a horizontal
strip containing the real axis, and has “moderate decrease” at infinity,1 so
that the integral defining the Fourier transform f̂ converges. As a result,
we conclude that f̂ decreases exponentially at infinity; it also follows
directly that the Fourier inversion formula holds. Moreover one can
easily obtain from these considerations the Poisson summation formula∑

n∈Z
f(n) =

∑
n∈Z

f̂(n). Incidentally, all these theorems are elegant
consequences of contour integration.

At a second stage, we take as our starting point the validity of the
Fourier inversion formula, which holds if we assume that both f and f̂ are
of moderate decrease, without making any assumptions on the analyticity
of f . We then ask a simple but natural question: What are the conditions
on f so that its Fourier transform is supported in a bounded interval,
say [−M,M ]? This is a basic problem that, as one notices, can be stated
without any reference to notions of complex analysis. However, it can
be resolved only in terms of the holomorphic properties of the function
f . The condition, given by the Paley-Wiener theorem, is that there be
a holomorphic extension of f to C that satisfies the growth condition

|f(z)| ≤ Ae2πM |z| for some constant A > 0.

Functions satisfying this condition are said to be of exponential type.
Observe that the condition that f̂ vanishes outside a compact set can

be viewed as an extreme version of a decay property at infinity, and so
the above theorem clearly falls within the context of the theme indicated
above.

In all these matters a decisive technique will consist in shifting the
contour of integration, that is the real line, within the boundaries of
a horizontal strip. This will take advantage of the special behavior of
e−2πizξ when z has a non-zero imaginary part. Indeed, when z is real this
exponential remains bounded and oscillates, while if Im(z) �= 0, it will

1We say that a function f is of moderate decrease if f is continuous and there
exists A > 0 so that |f(x)| ≤ A/(1 + x2) for all x ∈ R. A more restrictive condition is

that f ∈ S, the Schwartz space of testing functions, which also implies that f̂ belongs to
S. See Book I for more details.
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have exponential decay or exponential increase, depending on whether
the product ξIm(z) is negative or positive.

1 The class F

The weakest decay condition imposed on functions in our study of the
Fourier transform in Book I was that of moderate decrease. There, we
proved the Fourier inversion and Poisson summation formulas under the
hypothesis that f and f̂ satisfy

|f(x)| ≤ A

1 + x2
and |f̂(ξ)| ≤ A′

1 + ξ2

for some positive constantsA,A′ and all x, ξ ∈ R. We were led to consider
this class of functions because of various examples such as the Poisson
kernel

Py(x) =
1
π

y

y2 + x2

for y > 0, which played a fundamental role in the solution of the Dirichlet
problem for the steady-state heat equation in the upper half-plane. There
we had P̂y(ξ) = e−2πy|ξ|.

In the present context, we introduce a class of functions particularly
suited to the goal we have set: proving theorems about the Fourier trans-
form using complex analysis. Moreover, this class will be large enough
to contain many of the important applications we have in mind.

For each a > 0 we denote by Fa the class of all functions f that satisfy
the following two conditions:

(i) The function f is holomorphic in the horizontal strip

Sa = {z ∈ C : |Im(z)| < a}.

(ii) There exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2
for all x ∈ R and |y| < a.

In other words, Fa consists of those holomorphic functions on Sa that
are of moderate decay on each horizontal line Im(z) = y, uniformly in
−a < y < a. For example, f(z) = e−πz2

belongs to Fa for all a. Also,
the function

f(z) =
1
π

c

c2 + z2
,
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which has simple poles at z = ±ci, belongs to Fa for all 0 < a < c.
Another example is provided by f(z) = 1/ coshπz, which belongs to

Fa whenever |a| < 1/2. This function, as well as one of its fundamental
properties, was already discussed in Example 3, Section 2.1 of Chapter 3.

Note also that a simple application of the Cauchy integral formulas
shows that if f ∈ Fa, then for every n, the nth derivative of f belongs to
Fb for all b with 0 < b < a (Exercise 2).

Finally, we denote by F the class of all functions that belong to Fa for
some a.

Remark. The condition of moderate decrease can be weakened some-
what by replacing the order of decrease of A/(1 + x2) by A/(1 + |x|1+ε)
for any ε > 0. As the reader will observe, many of the results below
remain unchanged with this less restrictive condition.

2 Action of the Fourier transform on F

Here we prove three theorems, including the Fourier inversion and Pois-
son summation formulas, for functions in F. The idea behind all three
proofs is the same: contour integration. Thus the approach used will be
different from that of the corresponding results in Book I.

Theorem 2.1 If f belongs to the class Fa for some a > 0, then
|f̂(ξ)| ≤ Be−2πb|ξ| for any 0 ≤ b < a.

Proof. Recall that f̂(ξ) =
∫∞
−∞ f(x)e−2πixξ dx. The case b = 0 simply

says that f̂ is bounded, which follows at once from the integral defining
f̂ , the assumption that f is of moderate decrease, and the fact that the
exponential is bounded by 1.

Now suppose 0 < b < a and assume first that ξ > 0. The main step
consists of shifting the contour of integration, that is the real line, down
by b. More precisely, consider the contour in Figure 1 as well as the
function g(z) = f(z)e−2πizξ.

We claim that as R tends to infinity, the integrals of g over the two
vertical sides converge to zero. For example, the integral over the vertical
segment on the left can be estimated by∣∣∣∣∣

∫ −R

−R−ib

g(z) dz

∣∣∣∣∣ ≤
∫ b

0

|f(−R− it)e−2πi(−R−it)ξ | dt

≤
∫ b

0

A

R2
e−2πtξ dt

= O(1/R2).
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0
−R R

R− ib−R− ib

Figure 1. The contour in the proof of Theorem 2.1 when ξ > 0

A similar estimate for the other side proves our claim. Therefore, by
Cauchy’s theorem applied to the large rectangle, we find in the limit as
R tends to infinity that

(1) f̂(ξ) =
∫ ∞

−∞
f(x− ib)e−2πi(x−ib)ξ dx,

which leads to the estimate

|f̂(ξ)| ≤
∫ ∞

−∞

A

1 + x2
e−2πbξ dx ≤ Be−2πbξ,

where B is a suitable constant. A similar argument for ξ < 0, but this
time shifting the real line up by b, allows us to finish the proof of the
theorem.

This result says that whenever f ∈ F, then f̂ has rapid decay at infinity.
We remark that the further we can extend f (that is, the larger a), then
the larger we can choose b, hence the better the decay. We shall return
to this circle of ideas in Section 3, where we describe those f for which
f̂ has the ultimate decay condition: compact support.

Since f̂ decreases rapidly on R, the integral in the Fourier inversion
formula makes sense, and we now turn to the complex analytic proof of
this identity.

Theorem 2.2 If f ∈ F, then the Fourier inversion holds, namely

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ for all x ∈ R.
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Besides contour integration, the proof of the theorem requires a simple
identity, which we isolate.

Lemma 2.3 If A is positive and B is real, then
∫∞
0
e−(A+iB)ξ dξ =

1
A+iB .

Proof. Since A > 0 and B ∈ R, we have |e−(A+iB)ξ| = e−Aξ, and the
integral converges. By definition∫ ∞

0

e−(A+iB)ξ dξ = lim
R→∞

∫ R

0

e−(A+iB)ξ dξ.

However, ∫ R

0

e−(A+iB)ξ dξ =
[
−e

−(A+iB)ξ

A+ iB

]R

0

,

which tends to 1/(A+ iB) as R tends to infinity.

We can now prove the inversion theorem. Once again, the sign of ξ
matters, so we begin by writing∫ ∞

−∞
f̂(ξ)e2πixξ dξ =

∫ 0

−∞
f̂(ξ)e2πixξ dξ +

∫ ∞

0

f̂(ξ)e2πixξ dξ.

For the second integral we argue as follows. Say f ∈ Fa and choose
0 < b < a. Arguing as the proof of Theorem 2.1, or simply using equa-
tion (1), we get

f̂(ξ) =
∫ ∞

−∞
f(u− ib)e−2πi(u−ib)ξ du,

so that with an application of the lemma and the convergence of the
integration in ξ, we find∫ ∞

0

f̂(ξ)e2πixξ dξ =
∫ ∞

0

∫ ∞

−∞
f(u− ib)e−2πi(u−ib)ξe2πixξ du dξ

=
∫ ∞

−∞
f(u− ib)

∫ ∞

0

e−2πi(u−ib−x)ξ dξ du

=
∫ ∞

−∞
f(u− ib)

1
2πb+ 2πi(u− x)

du

=
1

2πi

∫ ∞

−∞

f(u− ib)
u− ib− x

du

=
1

2πi

∫
L1

f(ζ)
ζ − x

dζ,
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where L1 denotes the line {u− ib : u ∈ R} traversed from left to right.
(In other words, L1 is the real line shifted down by b.) For the integral
when ξ < 0, a similar calculation gives∫ 0

−∞
f̂(ξ)e2πixξ dξ = − 1

2πi

∫
L2

f(ζ)
ζ − x

dζ,

where L2 is the real line shifted up by b, with orientation from left to
right. Now given x ∈ R, consider the contour γR in Figure 2.

0

R+ ib

R− ib

x

−R+ ib

−R− ib

γR

Figure 2. The contour γR in the proof of Theorem 2.2

The function f(ζ)/(ζ − x) has a simple pole at x with residue f(x), so
the residue formula gives

f(x) =
1

2πi

∫
γR

f(ζ)
ζ − x

dζ.

Letting R tend to infinity, one checks easily that the integral over the
vertical sides goes to 0 and therefore, combining with the previous results,
we get

f(x) =
1

2πi

∫
L1

f(ζ)
ζ − x

dζ − 1
2πi

∫
L2

f(ζ)
ζ − x

dζ

=
∫ ∞

0

f̂(ξ)e2πixξ dξ +
∫ 0

−∞
f̂(ξ)e2πixξ dξ

=
∫ ∞

−∞
f̂ (ξ)e2πixξ dξ,
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and the theorem is proved.

The last of our three theorems is the Poisson summation formula.

Theorem 2.4 If f ∈ F, then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Say f ∈ Fa and choose some b satisfying 0 < b < a. The func-
tion 1/(e2πiz − 1) has simple poles with residue 1/(2πi) at the integers.
Thus f(z)/(e2πiz − 1) has simple poles at the integers n, with residues
f(n)/2πi. We may therefore apply the residue formula to the contour
γN in Figure 3 where N is an integer.

N + 1
2 + ib

N + 1
2 − ib

−N − 1
2 + ib

−N − 1
2 − ib

−N − 1 −N N N + 110−1

γN

Figure 3. The contour γN in the proof of Theorem 2.4

This yields ∑
|n|≤N

f(n) =
∫

γN

f(z)
e2πiz − 1

dz.

Letting N tend to infinity, and recalling that f has moderate decrease,
we see that the sum converges to

∑
n∈Z

f(n), and also that the integral
over the vertical segments goes to 0. Therefore, in the limit we get

(2)
∑
n∈Z

f(n) =
∫

L1

f(z)
e2πiz − 1

dz −
∫

L2

f(z)
e2πiz − 1

dz
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where L1 and L2 are the real line shifted down and up by b, respectively.
Now we use the fact that if |w| > 1, then

1
w − 1

= w−1
∞∑

n=0

w−n

to see that on L1 (where |e2πiz| > 1) we have

1
e2πiz − 1

= e−2πiz

∞∑
n=0

e−2πinz.

Also if |w| < 1, then

1
w − 1

= −
∞∑

n=0

wn

so that on L2

1
e2πiz − 1

= −
∞∑

n=0

e2πinz.

Substituting these observations in (2) we find that

∑
n∈Z

f(n) =
∫

L1

f(z)

(
e−2πiz

∞∑
n=0

e−2πinz

)
dz +

∫
L2

f(z)

( ∞∑
n=0

e2πinz

)
dz

=
∞∑

n=0

∫
L1

f(z)e−2πi(n+1)z dz +
∞∑

n=0

∫
L2

f(z)e2πinz dz

=
∞∑

n=0

∫ ∞

−∞
f(x)e−2πi(n+1)x dx+

∞∑
n=0

∫ ∞

−∞
f(x)e2πinx dz

=
∞∑

n=0

f̂(n+ 1) +
∞∑

n=0

f̂(−n)

=
∑
n∈Z

f̂ (n),

where we have shifted L1 and L2 back to the real line according to
equation (1) and its analogue for the shift down.

The Poisson summation formula has many far-reaching consequences,
and we close this section by deriving several interesting identities that
are of importance for later applications.
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First, we recall the calculation in Example 1, Chapter 2, which showed
that the function e−πx2

was its own Fourier transform:∫ ∞

−∞
e−πx2

e−2πixξ dx = e−πξ2
.

For fixed values of t > 0 and a ∈ R, the change of variables
x 	→ t1/2(x+ a) in the above integral shows that the Fourier transform
of the function f(x) = e−πt(x+a)2 is f̂(ξ) = t−1/2e−πξ2/te2πiaξ. Applying
the Poisson summation formula to the pair f and f̂ (which belong to F)
provides the following relation:

(3)
∞∑

n=−∞
e−πt(n+a)2 =

∞∑
n=−∞

t−1/2e−πn2/te2πina.

This identity has noteworthy consequences. For instance, the special case
a = 0 is the transformation law for a version of the “theta function”:
if we define ϑ for t > 0 by the series ϑ(t) =

∑∞
n=−∞ e−πn2t, then the

relation (3) says precisely that

(4) ϑ(t) = t−1/2ϑ(1/t) for t > 0.

This equation will be used in Chapter 6 to derive the key functional
equation of the Riemann zeta function, and this leads to its analytic
continuation. Also, the general case a ∈ R will be used in Chapter 10
to establish a corresponding law for the more general Jacobi theta func-
tion Θ.

For another application of the Poisson summation formula we recall
that we proved in Example 3, Chapter 3, that the function 1/ coshπx
was also its own Fourier transform:∫ ∞

−∞

e−2πixξ

coshπx
dx =

1
coshπξ

.

This implies that if t > 0 and a ∈ R, then the Fourier transform of the
function f(x) = e−2πiax/ cosh(πx/t) is f̂(ξ) = t/ cosh(π(ξ + a)t), and the
Poisson summation formula yields

(5)
∞∑

n=−∞

e−2πian

cosh(πn/t)
=

∞∑
n=−∞

t

cosh(π(n+ a)t)
.

This formula will be used in Chapter 10 in the context of the two-squares
theorem.
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3 Paley-Wiener theorem

In this section we change our point of view somewhat: we do not sup-
pose any analyticity of f , but we do assume the validity of the Fourier
inversion formula

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ if f̂ (ξ) =

∫ ∞

−∞
f(x)e−2πixξ dx,

under the conditions |f(x)| ≤ A/(1 + x2) and |f̂(ξ)| ≤ A′/(1 + ξ2). For a
proof of the inversion formula under these conditions, we refer the reader
to Chapter 5 in Book I.

We start by pointing out a partial converse to Theorem 2.1.

Theorem 3.1 Suppose f̂ satisfies the decay condition |f̂(ξ)| ≤ Ae−2πa|ξ|

for some constants a,A > 0. Then f(x) is the restriction to R of a
function f(z) holomorphic in the strip Sb = {z ∈ C : |Im(z)| < b}, for
any 0 < b < a.

Proof. Define

fn(z) =
∫ n

−n

f̂(ξ)e2πiξz dξ,

and note that fn is entire by Theorem 5.4 in Chapter 2. Observe also
that f(z) may be defined for all z in the strip Sb by

f(z) =
∫ ∞

−∞
f̂(ξ)e2πiξz dξ ,

because the integral converges absolutely by our assumption on f̂ : it is
majorized by

A

∫ ∞

−∞
e−2πa|ξ|e2πb|ξ| dξ ,

which is finite if b < a. Moreover, for z ∈ Sb

|f(z) − fn(z)| ≤ A

∫
|ξ|≥n

e−2πa|ξ|e2πb|ξ| dξ

→ 0 as n→ ∞,

and thus the sequence {fn} converges to f uniformly in Sb, which, by
Theorem 5.2 in Chapter 2, proves the theorem.

We digress briefly to make the following observation.
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Corollary 3.2 If f̂(ξ) = O(e−2πa|ξ|) for some a > 0, and f vanishes in
a non-empty open interval, then f = 0.

Since by the theorem f is analytic in a region containing the real line, the
corollary is a consequence of Theorem 4.8 in Chapter 2. In particular,
we recover the fact proved in Exercise 21, Chapter 5 in Book I, namely
that f and f̂ cannot both have compact support unless f = 0.

The Paley-Wiener theorem goes a step further than the previous theo-
rem, and describes the nature of those functions whose Fourier transforms
are supported in a given interval [−M,M ].

Theorem 3.3 Suppose f is continuous and of moderate decrease on
R. Then, f has an extension to the complex plane that is entire with
|f(z)| ≤ Ae2πM |z| for some A > 0, if and only if f̂ is supported in the
interval [−M,M ].

One direction is simple. Suppose f̂ is supported in [−M,M ]. Then
both f and f̂ have moderate decrease, and the Fourier inversion formula
applies

f(x) =
∫ M

−M

f̂(ξ)e2πiξx dξ.

Since the range of integration is finite, we may replace x by the complex
variable z in the integral, thereby defining a complex-valued function on
C by

g(z) =
∫ M

−M

f̂ (ξ)e2πiξz dξ.

By construction g(z) = f(z) if z is real, and g is holomorphic by Theo-
rem 5.4 in Chapter 2. Finally, if z = x+ iy, we have

|g(z)| ≤
∫ M

−M

|f̂(ξ)|e−2πξy dξ

≤ Ae2πM |z|.

The converse result requires a little more work. It starts with the
observation that if f̂ were supported in [−M,M ], then the argument
above would give the stronger bound |f(z)| ≤ Ae2π|y| instead of what we
assume, that is |f(z)| ≤ Ae2π|z|. The idea is then to try to reduce to the
better situation, where this stronger bound holds. However, this is not
quite enough because we need in addition a (moderate) decay as x→ ∞
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(when y �= 0) to deal with the convergence of certain integrals at infinity.
Thus we begin by also assuming this further property of f , and then we
remove the additional assumptions, one step at a time.

Step 1. We first assume that f is holomorphic in the complex plane,
and satisfies the following condition regarding decay in x and growth
in y:

(6) |f(x+ iy)| ≤ A′ e
2πM |y|

1 + x2
.

We then prove under this stronger assumption that f̂(ξ) = 0 if |ξ| > M .
To see this, we first suppose that ξ > M and write

f̂ (ξ) =
∫ ∞

−∞
f(x)e−2πiξx dx

=
∫ ∞

−∞
f(x− iy)e−2πiξ(x−iy) dx.

Here we have shifted the real line down by an amount y > 0 using the
standard argument (equation (1)). Putting absolute values gives the
bound

|f̂(ξ)| ≤ A′
∫ ∞

−∞

e2πMy−2πξy

1 + x2
dx

≤ Ce−2πy(ξ−M).

Letting y tend to infinity, and recalling that ξ −M > 0, proves that
f̂(ξ) = 0. A similar argument, shifting the contour up by y > 0, proves
that f̂(ξ) = 0 whenever ξ < −M .

Step 2. We relax condition (6) by assuming only that f satisfies

(7) |f(x+ iy)| ≤ Ae2πM |y|.

This is still a stronger condition than in the theorem, but it is weaker
than (6). Suppose first that ξ > M , and for ε > 0 consider the following
auxiliary function

fε(z) =
f(z)

(1 + iεz)2
.

We observe that the quantity 1/(1 + iεz)2 has absolute value less than
or equal to 1 in the closed lower half-plane (including the real line) and
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converges to 1 as ε tends to 0. In particular, this shows that f̂ε(ξ) → f̂(ξ)
as ε→ 0 since we may write

|f̂ε(ξ) − f̂(ξ)| ≤
∫ ∞

−∞
|f(x)|

[
1

(1 + iεx)2
− 1
]
dx,

and recall that f has moderate decrease on R.
But for each fixed ε, we have

|fε(x+ iy)| ≤ A′′ e
2πM |y|

1 + x2
,

so by Step 1 we must have f̂ε(ξ) = 0, and hence f̂(ξ) = 0 after passing to
the limit as ε→ 0. A similar argument applies if ξ < −M , although we
must now argue in the upper half-plane, and use the factor 1/(1 − iεz)2

instead.

Step 3. To conclude the proof, it suffices to show that the conditions
in the theorem imply condition (7) in Step 2. In fact, after dividing by
an appropriate constant, it suffices to show that if |f(x)| ≤ 1 for all real
x, and |f(z)| ≤ e2πM |z| for all complex z, then

|f(x+ iy)| ≤ e2πM |y|.

This will follow from an ingenious and very useful idea of Phragmén and
Lindelöf that allows one to adapt the maximum modulus principle to
various unbounded regions. The particular result we need is as follows.

Theorem 3.4 Suppose F is a holomorphic function in the sector

S = {z : −π/4 < arg z < π/4}

that is continuous on the closure of S. Assume |F (z)| ≤ 1 on the bound-
ary of the sector, and that there are constants C, c > 0 such that
|F (z)| ≤ Cec|z| for all z in the sector. Then

|F (z)| ≤ 1 for all z ∈ S.

In other words, if F is bounded by 1 on the boundary of S and has no
more than a reasonable amount of growth, then F is actually bounded
everywhere by 1. That some restriction on the growth of F is necessary
follows from a simple observation. Consider the function F (z) = ez2

.
Then F is bounded by 1 on the boundary of S, but if x is real, F (x) is
unbounded as x→ ∞. We now give the proof of Theorem 3.4.
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Proof. The idea is to subdue the “enemy” function ez2
and turn it

to our advantage: in brief, one modifies ez2
by replacing it by ezα

with
α < 2. For simplicity we take the case α = 3/2.

If ε > 0, let

Fε(z) = F (z)e−εz3/2
.

Here we have chosen the principal branch of the logarithm to define z3/2

so that if z = reiθ (with −π < θ < π), then z3/2 = r3/2e3iθ/2. Hence Fε

is holomorphic in S and continuous up to its boundary. Also

|e−εz3/2
| = e−εr3/2 cos(3θ/2);

and since −π/4 < θ < π/4 in the sector, we get the inequalities

−π
2
< −3π

8
<

3θ
2
<

3π
8
<
π

2
,

and therefore cos(3θ/2) is strictly positive in the sector. This, together
with the fact that |F (z)| ≤ Cec|z|, shows that Fε(z) decreases rapidly in
the closed sector as |z| → ∞, and in particular Fε is bounded. We claim
that in fact |Fε(z)| ≤ 1 for all z ∈ S, where S denotes the closure of S.
To prove this, we define

M = sup
z∈S

|Fε(z)|.

Assuming F is not identically zero, let {wj} be a sequence of points
such that |Fε(wj)| →M . Since M �= 0 and Fε decays to 0 as |z| becomes
large in the sector, wj cannot escape to infinity, and we conclude that
this sequence accumulates to a point w ∈ S. By the maximum principle,
w cannot be an interior point of S, so w lies on its boundary. But on the
boundary, we have first |F (z)| ≤ 1 by assumption, and also |e−εz3/2 | ≤ 1,
so that M ≤ 1, and the claim is proved.

Finally, we may let ε tend to 0 to conclude the proof of the theorem.

Further generalizations of the Phragmén-Lindelöf theorem are included
in Exercise 9 and Problem 3.

We must now use this result to conclude the proof of the Paley-
Wiener theorem, that is, show that if |f(x)| ≤ 1 and |f(z)| ≤ e2πM |z|,
then |f(z)| ≤ e2πM |y|. First, note that the sector in the Phragmén-
Lindelöf theorem can be rotated, say to the first quadrant Q = {z =
x+ iy : x > 0, y > 0}, and the result remains the same. Then, we con-
sider

F (z) = f(z)e2πiMz,
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and note that F is bounded by 1 on the positive real and positive imag-
inary axes. Since we also have |F (z)| ≤ Cec|z| in the quadrant, we con-
clude by the Phragmén-Lindelöf theorem that |F (z)| ≤ 1 for all z in Q,
which implies |f(z)| ≤ e2πMy. A similar argument for the other quad-
rants concludes Step 3 as well as the proof of the Paley-Wiener theorem.

We conclude with another version of the idea behind the Paley-Wiener
theorem, this time characterizing the functions whose Fourier transform
vanishes for all negative ξ.

Theorem 3.5 Suppose f and f̂ have moderate decrease. Then f̂(ξ) =
0 for all ξ < 0 if and only if f can be extended to a continuous and
bounded function in the closed upper half-plane {z = x+ iy : y ≥ 0} with
f holomorphic in the interior.

Proof. First assume f̂(ξ) = 0 for ξ < 0. By the Fourier inversion
formula

f(x) =
∫ ∞

0

f̂(ξ)e2πixξ dξ ,

and we can extend f when z = x+ iy with y ≥ 0 by

f(z) =
∫ ∞

0

f̂(ξ)e2πizξ dξ .

Notice that the integral converges and that

|f(z)| ≤ A

∫ ∞

0

dξ

1 + ξ2
<∞ ,

which proves the boundedness of f . The uniform convergence of

fn(z) =
∫ n

0

f̂(ξ)e2πixξ dξ

to f(z) in the closed half-plane establishes the continuity of f there, and
its holomorphicity in the interior.

For the converse, we argue in the spirit of the proof of Theorem 3.3.
For ε and δ positive, we set

fε,δ(z) =
f(z + iδ)
(1 − iεz)2

.

Then fε,δ is holomorphic in a region containing the closed upper half-
plane. One also shows as before, using Cauchy’s theorem, that f̂ε,δ(ξ) = 0
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for all ξ < 0. Then, passing to the limit successively, one has f̂ε,0(ξ) = 0
for ξ < 0, and finally f̂ (ξ) = f̂0,0(ξ) = 0 for all ξ < 0.

Remark. The reader should note a certain analogy between the above
theorem and Theorem 7.1 in Chapter 3. Here we are dealing with a
function holomorphic in the upper half-plane, and there with a function
holomorphic in a disc. In the present case the Fourier transform vanishes
when ξ < 0, and in the earlier case, the Fourier coefficients vanish when
n < 0.

4 Exercises

1. Suppose f is continuous and of moderate decrease, and f̂(ξ) = 0 for all ξ ∈ R.
Show that f = 0 by completing the following outline:

(a) For each fixed real number t consider the two functions

A(z) =

∫ t

−∞
f(x)e−2πiz(x−t) dx and B(z) = −

∫ ∞

t

f(x)e−2πiz(x−t) dx.

Show that A(ξ) = B(ξ) for all ξ ∈ R.

(b) Prove that the function F equal to A in the closed upper half-plane, and B
in the lower half-plane, is entire and bounded, thus constant. In fact, show
that F = 0.

(c) Deduce that ∫ t

−∞
f(x) dx = 0,

for all t, and conclude that f = 0.

2. If f ∈ Fa with a > 0, then for any positive integer n one has f (n) ∈ Fb whenever
0 ≤ b < a.

[Hint: Modify the solution to Exercise 8 in Chapter 2.]

3. Show, by contour integration, that if a > 0 and ξ ∈ R then

1

π

∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = e−2πa|ξ|,

and check that ∫ ∞

−∞
e−2πa|ξ|e2πiξx dξ =

1

π

a

a2 + x2
.
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4. Suppose Q is a polynomial of degree ≥ 2 with distinct roots, none lying on the
real axis. Calculate ∫ ∞

−∞

e−2πixξ

Q(x)
dx, ξ ∈ R

in terms of the roots of Q. What happens when several roots coincide?

[Hint: Consider separately the cases ξ < 0, ξ = 0, and ξ > 0. Use residues.]

5. More generally, let R(x) = P (x)/Q(x) be a rational function with (degree Q) ≥
(degreeP )+2 and Q(x) 
= 0 on the real axis.

(a) Prove that if α1, . . . , αk are the roots of R in the upper half-plane, then
there exists polynomials Pj(ξ) of degree less than the multiplicity of αj so
that ∫ ∞

−∞
R(x)e−2πixξ dx =

k∑
j=1

Pj(ξ)e
−2πiαjξ, when ξ < 0.

(b) In particular, if Q(z) has no zeros in the upper half-plane, then∫∞
−∞R(x)e−2πixξ dx = 0 for ξ < 0.

(c) Show that similar results hold in the case ξ > 0.

(d) Show that ∫ ∞

−∞
R(x)e−2πixξ dx = O(e−a|ξ|), ξ ∈ R

as |ξ| → ∞ for some a > 0. Determine the best possible a’s in terms of the
roots of R.

[Hint: For part (a), use residues. The powers of ξ appear when one differentiates
the function f(z) = R(z)e−2πizξ (as in the formula of Theorem 1.4 in the previous
chapter). For part (c) argue in the lower half-plane.]

6. Prove that

1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|

whenever a > 0. Hence show that the sum equals coth πa.

7. The Poisson summation formula applied to specific examples often provides
interesting identities.

(a) Let τ be fixed with Im(τ ) > 0. Apply the Poisson summation formula to

f(z) = (τ + z)−k ,
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where k is an integer ≥ 2, to obtain

∞∑
n=−∞

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1e2πimτ .

(b) Set k = 2 in the above formula to show that if Im(τ ) > 0, then

∞∑
n=−∞

1

(τ + n)2
=

π2

sin2(πτ )
.

(c) Can one conclude that the above formula holds true whenever τ is any
complex number that is not an integer?

[Hint: For (a), use residues to prove that f̂(ξ) = 0, if ξ < 0, and

f̂(ξ) =
(−2πi)k

(k − 1)!
ξk−1e2πiξτ , when ξ > 0.]

8. Suppose f̂ has compact support contained in [−M,M ] and let f(z) =
∑∞

n=0 anz
n.

Show that

an =
(2πi)n

n!

∫ M

−M

f̂(ξ)ξn dξ,

and as a result

lim sup
n→∞

(n!|an|)1/n ≤ 2πM.

In the converse direction, let f be any power series f(z) =
∑∞

n=0 anz
n with

lim supn→∞(n!|an|)1/n ≤ 2πM . Then, f is holomorphic in the complex plane,
and for every ε > 0 there exists Aε > 0 such that

|f(z)| ≤ Aεe
2π(M+ε)|z|.

9. Here are further results similar to the Phragmén-Lindelöf theorem.

(a) Let F be a holomorphic function in the right half-plane that extends continu-
ously to the boundary, that is, the imaginary axis. Suppose that |F (iy)| ≤ 1
for all y ∈ R, and

|F (z)| ≤ Cec|z|γ

for some c, C > 0 and γ < 1. Prove that |F (z)| ≤ 1 for all z in the right
half-plane.
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(b) More generally, let S be a sector whose vertex is the origin, and forming an
angle of π/β. Let F be a holomorphic function in S that is continuous on
the closure of S, so that |F (z)| ≤ 1 on the boundary of S and

|F (z)| ≤ Cec|z|α for all z ∈ S

for some c, C > 0 and 0 < α < β. Prove that |F (z)| ≤ 1 for all z ∈ S.

10. This exercise generalizes some of the properties of e−πx2
related to the fact

that it is its own Fourier transform.
Suppose f(z) is an entire function that satisfies

|f(x+ iy)| ≤ ce−ax2+by2

for some a, b, c > 0. Let

f̂(ζ) =

∫ ∞

−∞
f(x)e−2πixζ dx.

Then, f̂ is an entire function of ζ that satisfies

|f̂(ξ + iη)| ≤ c′e−a′ξ2+b′η2

for some a′, b′, c′ > 0.

[Hint: To prove f̂(ξ) = O(e−a′ξ2
), assume ξ > 0 and change the contour of inte-

gration to x− iy for some y > 0 fixed, and −∞ < x <∞. Then

f̂(ξ) = O(e−2πyξeby2
).

Finally, choose y = dξ where d is a small constant.]

11. One can give a neater formulation of the result in Exercise 10 by proving the
following fact.

Suppose f(z) is an entire function of strict order 2, that is,

f(z) = O(ec1|z|2)

for some c1 > 0. Suppose also that for x real,

f(x) = O(e−c2|x|2)

for some c2 > 0. Then

|f(x+ iy)| = O(e−ax2+by2
)

for some a, b > 0. The converse is obviously true.
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12. The principle that a function and its Fourier transform cannot both be too
small at infinity is illustrated by the following theorem of Hardy.

If f is a function on R that satisfies

f(x) = O(e−πx2
) and f̂(ξ) = O(e−πξ2

),

then f is a constant multiple of e−πx2
. As a result, if f(x) = O(e−πAx2

), and

f̂(ξ) = O(e−πBξ2
), with AB > 1 and A,B > 0, then f is identically zero.

(a) If f is even, show that f̂ extends to an even entire function. Moreover, if
g(z) = f̂(z1/2), then g satisfies

|g(x)| ≤ ce−πx and |g(z)| ≤ ceπR sin2(θ/2) ≤ ceπ|z|

when x ∈ R and z = Reiθ with R ≥ 0 and θ ∈ R.

(b) Apply the Phragmén-Lindelöf principle to the function

F (z) = g(z)eγz where γ = iπ
e−iπ/(2β)

sin π/(2β)

and the sector 0 ≤ θ ≤ π/β < π, and let β → π to deduce that eπzg(z) is
bounded in the closed upper half-plane. The same result holds in the lower
half-plane, so by Liouville’s theorem eπzg(z) is constant, as desired.

(c) If f is odd, then f̂(0) = 0, and apply the above argument to f̂(z)/z to deduce
that f = f̂ = 0. Finally, write an arbitrary f as an appropriate sum of an
even function and an odd function.

5 Problems

1. Suppose f̂(ξ) = O(e−a|ξ|p ) as |ξ| → ∞, for some p > 1. Then f is holomorphic
for all z and satisfies the growth condition

|f(z)| ≤ Aea|z|q

where 1/p + 1/q = 1.
Note that on the one hand, when p→ ∞ then q → 1, and this limiting case

can be interpreted as part of Theorem 3.3. On the other hand, when p→ 1 then
q → ∞, and this limiting case in a sense brings us back to Theorem 2.1.

[Hint: To prove the result, use the inequality −ξp + ξu ≤ uq, which is valid when
ξ and u are non-negative. To establish this inequality, examine separately the
cases ξp ≥ ξu and ξp < ξu; note also that the functions ξ = uq−1 and u = ξp−1 are
inverses of each other because (p− 1)(q − 1) = 1.]
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2. The problem is to solve the differential equation

an
dn

dtn
u(t) + an−1

dn−1

dtn−1
u(t) + · · · + a0u(t) = f(t) ,

where a0, a1, . . . , an are complex constants, and f is a given function. Here we
suppose that f has bounded support and is smooth (say of class C2).

(a) Let

f̂(z) =

∫ ∞

−∞
f(t)e−2πizt dt.

Observe that f̂ is an entire function, and using integration by parts show
that

|f̂(x+ iy)| ≤ A

1 + x2

if |y| ≤ a for any fixed a ≥ 0.

(b) Write

P (z) = an(2πiz)n + an−1(2πiz)
n−1 + · · · + a0.

Find a real number c so that P (z) does not vanish on the line

L = {z : z = x+ ic, x ∈ R}.

(c) Set

u(t) =

∫
L

e2πizt

P (z)
f̂(z) dz.

Check that

n∑
j=0

aj

(
d

dt

)j

u(t) =

∫
L

e2πiztf̂(z) dz

and ∫
L

e2πiztf̂(z) dz =

∫ ∞

−∞
e2πixtf̂(x) dx.

Conclude by the Fourier inversion theorem that

n∑
j=0

aj

(
d

dt

)j

u(t) = f(t).
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Note that the solution u depends on the choice c.

3.∗ In this problem, we investigate the behavior of certain bounded holomorphic
functions in an infinite strip. The particular result described here is sometimes
called the three-lines lemma.

(a) Suppose F (z) is holomorphic and bounded in the strip 0 < Im(z) < 1 and
continuous on its closure. If |F (z)| ≤ 1 on the boundary lines, then
|F (z)| ≤ 1 throughout the strip.

(b) For the more general F , let supx∈R |F (x)| = M0 and supx∈R |F (x+ i)| =
M1. Then,

sup
x∈R

|F (x+ iy)| ≤ M1−y
0 My

1 , if 0 ≤ y ≤ 1.

(c) As a consequence, prove that log supx∈R |F (x+ iy)| is a convex function of
y when 0 ≤ y ≤ 1.

[Hint: For part (a), apply the maximum modulus principle to Fε(z) = F (z)e−εz2
.

For part (b), consider Mz−1
0 M−z

1 F (z).]

4.∗ There is a relation between the Paley-Wiener theorem and an earlier represen-
tation due to E. Borel.

(a) A function f(z), holomorphic for all z, satisfies |f(z)| ≤ Aεe
2π(M+ε)|z| for

all ε if and only if it is representable in the form

f(z) =

∫
C

e2πizwg(w) dw

where g is holomorphic outside the circle of radius M centered at the origin,
and g vanishes at infinity. Here C is any circle centered at the origin of radius
larger thanM . In fact, if f(z) =

∑
anz

n, then g(w) =
∑∞

n=0 Anw
−n−1 with

an = An(2πi)n+1/n!.

(b) The connection with Theorem 3.3 is as follows. For these functions f (for
which in addition f and f̂ are of moderate decrease on the real axis), one can
assert that the g above is holomorphic in the larger region, which consists
of the slit plane C − [−M,M ]. Moreover, the relation between g and the
Fourier transform f̂ is

g(z) =
1

2πi

∫ M

−M

f̂(ξ)

ξ − z
dξ

so that f̂ represents the jump of g across the segment [−M,M ]; that is,

f̂(x) = lim
ε→0,ε>0

g(x+ iε) − g(x− iε).

See Problem 5 in Chapter 3.
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...but after the 15th of October I felt myself a free
man, with such longing for mathematical work, that
the last two months flew by quickly, and that only
today I found the letter of the 19th of October that I
had not answered. The result of my work, with which
I am not entirely satisfied, I want to share with you.

Firstly, in looking back at my lectures, a gap in
function theory needed to be filled. As you know, up
to now the following question had been unresolved.
Given an arbitrary sequence of complex numbers,
a1, a2, . . . , can one construct an entire (transcenden-
tal) function that vanishes at these values, with pre-
scribed multiplicities, and nowhere else?...

K. Weierstrass, 1874

In this chapter, we will study functions that are holomorphic in the
whole complex plane; these are called entire functions. Our presentation
will be organized around the following three questions:

1. Where can such functions vanish? We shall see that the obvious
necessary condition is also sufficient: if {zn} is any sequence of
complex numbers having no limit point in C, then there exists an
entire function vanishing exactly at the points of this sequence. The
construction of the desired function is inspired by Euler’s product
formula for sinπz (the prototypical case when {zn} is Z), but re-
quires an additional refinement: the Weierstrass canonical factors.

2. How do these functions grow at infinity? Here, matters are con-
trolled by an important principle: the larger a function is, the more
zeros it can have. This principle already manifests itself in the sim-
ple case of polynomials. By the fundamental theorem of algebra,
the number of zeros of a polynomial P of degree d is precisely d,
which is also the exponent in the order of (polynomial) growth of
P , namely

sup
|z|=R

|P (z)| ≈ Rd as R→ ∞.
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A precise version of this general principle is contained in Jensen’s
formula, which we prove in the first section. This formula, central
to much of the theory developed in this chapter, exhibits a deep
connection between the number of zeros of a function in a disc and
the (logarithmic) average of the function over the circle. In fact,
Jensen’s formula not only constitutes a natural starting point for
us, but also leads to the fruitful theory of value distributions, also
called Nevanlinna theory (which, however, we do not take up here).

3. To what extent are these functions determined by their zeros? It
turns out that if an entire function has a finite (exponential) order
of growth, then it can be specified by its zeros up to multiplication
by a simple factor. The precise version of this assertion is the
Hadamard factorization theorem. It may be viewed as another
instance of the general rule that was formulated in Chapter 3, that
is, that under appropriate conditions, a holomorphic function is
essentially determined by its zeros.

1 Jensen’s formula

In this section, we denote by DR and CR the open disc and circle of
radius R centered at the origin. We shall also, in the rest of this chapter,
exclude the trivial case of the function that vanishes identically.

Theorem 1.1 Let Ω be an open set that contains the closure of a disc
DR and suppose that f is holomorphic in Ω, f(0) �= 0, and f vanishes
nowhere on the circle CR. If z1, . . . , zN denote the zeros of f inside the
disc (counted with multiplicities),1 then

(1) log |f(0)| =
N∑

k=1

log
(
|zk|
R

)
+

1
2π

∫ 2π

0

log |f(Reiθ)| dθ.

The proof of the theorem consists of several steps.

Step 1. First, we observe that if f1 and f2 are two functions satisfying
the hypotheses and the conclusion of the theorem, then the product
f1f2 also satisfies the hypothesis of the theorem and formula (1). This
observation is a simple consequence of the fact that logxy = log x+ log y
whenever x and y are positive numbers, and that the set of zeros of f1f2
is the union of the sets of zeros of f1 and f2.

1That is, each zero appears in the sequence as many times as its order.
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Step 2. The function

g(z) =
f(z)

(z − z1) · · · (z − zN )

initially defined on Ω − {z1, . . . , zN}, is bounded near each zj. Therefore
each zj is a removable singularity, and hence we can write

f(z) = (z − z1) · · · (z − zN)g(z)

where g is holomorphic in Ω and nowhere vanishing in the closure of DR.
By Step 1, it suffices to prove Jensen’s formula for functions like g that
vanish nowhere, and for functions of the form z − zj .

Step 3. We first prove (1) for a function g that vanishes nowhere in the
closure of DR. More precisely, we must establish the following identity:

log |g(0)| = 1
2π

∫ 2π

0

log |g(Reiθ)| dθ.

In a slightly larger disc, we can write g(z) = eh(z) where h is holomorphic
in that disc. This is possible since discs are simply connected, and we
can define h = log g (see Theorem 6.2 in Chapter 3). Now we observe
that

|g(z)| = |eh(z)| = |eRe(h(z))+i Im(h(z))| = eRe(h(z)),

so that log |g(z)| = Re(h(z)). The mean value property (Corollary 7.3 in
Chapter 3) then immediately implies the desired formula for g.

Step 4. The last step is to prove the formula for functions of the form
f(z) = z − w, where w ∈ DR. That is, we must show that

log |w| = log
(
|w|
R

)
+

1
2π

∫ 2π

0

log |Reiθ − w| dθ.

Since log(|w|/R)=log |w|−logR and log |Reiθ− w|=logR+log |eiθ− w/R|,
it suffices to prove that∫ 2π

0

log |eiθ − a| dθ = 0, whenever |a| < 1.

This in turn is equivalent (after the change of variables θ 	→ −θ) to∫ 2π

0

log |1 − aeiθ| dθ = 0, whenever |a| < 1.
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To prove this, we use the function F (z) = 1 − az, which vanishes nowhere
in the closure of the unit disc. As a consequence, there exists a holomor-
phic function G in a disc of radius greater than 1 such that F (z) =
eG(z). Then |F | = eRe(G), and therefore log |F | = Re(G). Since F (0) = 1
we have log |F (0)| = 0, and an application of the mean value property
(Corollary 7.3 in Chapter 3) to the harmonic function log |F (z)| con-
cludes the proof of the theorem.

From Jensen’s formula we can derive an identity linking the growth of
a holomorphic function with its number of zeros inside a disc. If f is a
holomorphic function on the closure of a disc DR, we denote by n(r) (or
nf (r) when it is necessary to keep track of the function in question) the
number of zeros of f (counted with their multiplicities) inside the disc
Dr, with 0 < r < R. A simple but useful observation is that n(r) is a
non-decreasing function of r.

We claim that if f(0) �= 0, and f does not vanish on the circle CR,
then

(2)
∫ R

0

n(r)
dr

r
=

1
2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

This formula is immediate from Jensen’s equality and the next lemma.

Lemma 1.2 If z1, . . . , zN are the zeros of f inside the disc DR, then∫ R

0

n(r)
dr

r
=

N∑
k=1

log
∣∣∣∣Rzk

∣∣∣∣ .
Proof. First we have

N∑
k=1

log
∣∣∣∣Rzk

∣∣∣∣ = N∑
k=1

∫ R

|zk|

dr

r
.

If we define the characteristic function

ηk(r) =
{

1 if r > |zk|,
0 if r ≤ |zk|,

then
∑N

k=1 ηk(r) = n(r), and the lemma is proved using

N∑
k=1

∫ R

|zk|

dr

r
=

N∑
k=1

∫ R

0

ηk(r)
dr

r
=
∫ R

0

(
N∑

k=1

ηk(r)

)
dr

r
=
∫ R

0

n(r)
dr

r
.
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2 Functions of finite order

Let f be an entire function. If there exist a positive number ρ and
constants A,B > 0 such that

|f(z)| ≤ AeB|z|ρ for all z ∈ C,

then we say that f has an order of growth ≤ ρ. We define the order
of growth of f as

ρf = inf ρ ,

where the infimum is over all ρ > 0 such that f has an order of growth
≤ ρ.

For example, the order of growth of the function ez2
is 2.

Theorem 2.1 If f is an entire function that has an order of growth ≤ ρ,
then:

(i) n(r) ≤ Crρ for some C > 0 and all sufficiently large r.

(ii) If z1, z2, . . . denote the zeros of f , with zk �= 0, then for all s > ρ
we have

∞∑
k=1

1
|zk|s

<∞.

Proof. It suffices to prove the estimate for n(r) when f(0) �= 0. Indeed,
consider the function F (z) = f(z)/z where � is the order of the zero of
f at the origin. Then nf (r) and nF (r) differ only by a constant, and F
also has an of order of growth ≤ ρ.

If f(0) �= 0 we may use formula (2), namely∫ R

0

n(x)
dx

x
=

1
2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

Choosing R = 2r, this formula implies∫ 2r

r

n(x)
dx

x
≤ 1

2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

On the one hand, since n(r) is increasing, we have∫ 2r

r

n(x)
dx

x
≥ n(r)

∫ 2r

r

dx

x
= n(r)[log 2r − log r] = n(r) log 2,
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and on the other hand, the growth condition on f gives∫ 2π

0

log |f(Reiθ)| dθ ≤
∫ 2π

0

log |AeBRρ | dθ ≤ C′rρ

for all large r. Consequently, n(r) ≤ Crρ for an appropriate C > 0 and
all sufficiently large r.

The following estimates prove the second part of the theorem:

∑
|zk|≥1

|zk|−s =
∞∑

j=0

 ∑
2j≤|zk|<2j+1

|zk|−s


≤

∞∑
j=0

2−jsn(2j+1)

≤ c

∞∑
j=0

2−js2(j+1)ρ

≤ c′
∞∑

j=0

(2ρ−s)j

<∞.

The last series converges because s > ρ.

Part (ii) of the theorem is a noteworthy fact, which we shall use in a
later part of this chapter.

We give two simple examples of the theorem; each of these shows that
the condition s > ρ cannot be improved.

Example 1. Consider f(z) = sin πz. Recall Euler’s identity, namely

f(z) =
eiπz − e−iπz

2i
,

which implies that |f(z)| ≤ eπ|z|, and f has an order of growth ≤ 1. By
taking z = ix, where x ∈ R, it is clear that the order of growth of f is
actually equal to 1. However, f vanishes to order 1 at z = n for each
n ∈ Z, and

∑
n�=0 1/|n|s <∞ precisely when s > 1.

Example 2. Consider f(z) = cos z1/2, which we define by

cos z1/2 =
∞∑

n=0

(−1)n zn

(2n)!
.
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Then f is entire, and it is easy to see that

|f(z)| ≤ e|z|
1/2
,

and the order of growth of f is 1/2. Moreover, f(z) vanishes when
zn = ((n+ 1/2)π)2, while

∑
n 1/|zn|s <∞ exactly when s > 1/2.

A natural question is whether or not, given any sequence of complex
numbers z1, z2, . . ., there exists an entire function f with zeros precisely
at the points of this sequence. A necessary condition is that z1, z2, . . . do
not accumulate, in other words we must have

lim
k→∞

|zk| = ∞ ,

otherwise f would vanish identically by Theorem 4.8 in Chapter 2. Weier-
strass proved that this condition is also sufficient by explicitly construct-
ing a function with these prescribed zeros. A first guess is of course the
product

(z − z1)(z − z2) · · · ,

which provides a solution in the special case when the sequence of zeros
is finite. In general, Weierstrass showed how to insert factors in this
product so that the convergence is guaranteed, yet no new zeros are
introduced.

Before coming to the general construction, we review infinite products
and study a basic example.

3 Infinite products

3.1 Generalities

Given a sequence {an}∞n=1 of complex numbers, we say that the product

∞∏
n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.
A useful necessary condition that guarantees the existence of a product

is contained in the following proposition.
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Proposition 3.1 If
∑

|an| <∞, then the product
∏∞

n=1(1 + an) con-
verges. Moreover, the product converges to 0 if and only if one of its
factors is 0.

This is simply Proposition 1.9 of Chapter 8 in Book I. We repeat the
proof here.

Proof. If
∑

|an| converges, then for all large n we must have
|an| < 1/2. Disregarding if necessary finitely many terms, we may as-
sume that this inequality holds for all n. In particular, we can define
log(1 + an) by the usual power series (see (6) in Chapter 3), and this
logarithm satisfies the property that 1 + z = elog(1+z) whenever |z| < 1.
Hence we may write the partial products as follows:

N∏
n=1

(1 + an) =
N∏

n=1

elog(1+an) = eBN ,

where BN =
∑N

n=1 bn with bn = log(1 + an). By the power series expan-
sion we see that | log(1 + z)| ≤ 2|z|, if |z| < 1/2. Hence |bn| ≤ 2|an|, so
BN converges as N → ∞ to a complex number, say B. Since the expo-
nential function is continuous, we conclude that eBN converges to eB as
N → ∞, proving the first assertion of the proposition. Observe also that
if 1 + an �= 0 for all n, then the product converges to a non-zero limit
since it is expressed as eB.

More generally, we can consider products of holomorphic functions.

Proposition 3.2 Suppose {Fn} is a sequence of holomorphic functions
on the open set Ω. If there exist constants cn > 0 such that∑

cn <∞ and |Fn(z) − 1| ≤ cn for all z ∈ Ω,

then:

(i) The product
∏∞

n=1 Fn(z) converges uniformly in Ω to a holomorphic
function F (z).

(ii) If Fn(z) does not vanish for any n, then

F ′(z)
F (z)

=
∞∑

n=1

F ′
n(z)
Fn(z)

.

Proof. To prove the first statement, note that for each z we may
argue as in the previous proposition if we write Fn(z) = 1 + an(z), with
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|an(z)| ≤ cn. Then, we observe that the estimates are actually uniform
in z because the cn’s are constants. It follows that the product converges
uniformly to a holomorphic function, which we denote by F (z).

To establish the second part of the theorem, suppose that K is a
compact subset of Ω, and let

GN(z) =
N∏

n=1

Fn(z).

We have just proved that GN → F uniformly in Ω, so by Theorem 5.3
in Chapter 2, the sequence {G′

N} converges uniformly to F ′ in K. Since
GN is uniformly bounded from below onK, we conclude that G′

N/GN →
F ′/F uniformly on K, and because K is an arbitrary compact subset of
Ω, the limit holds for every point of Ω. Moreover, as we saw in Section 4
of Chapter 3

G′
N

GN
=

N∑
n=1

F ′
n

Fn
,

so part (ii) of the proposition is also proved.

3.2 Example: the product formula for the sine function

Before proceeding with the general theory of Weierstrass products, we
consider the key example of the product formula for the sine function:

(3)
sin πz
π

= z

∞∏
n=1

(
1 − z2

n2

)
.

This identity will in turn be derived from the sum formula for the cotan-
gent function (cotπz = cosπz/ sinπz):

(4) π cotπz =
∞∑

n=−∞

1
z + n

= lim
N→∞

∑
|n|≤N

1
z + n

=
1
z

+
∞∑

n=1

2z
z2 − n2

.

The first formula holds for all complex numbers z, and the second when-
ever z is not an integer. The sum

∑∞
n=−∞ 1/(z + n) needs to be properly

understood, because the separate halves corresponding to positive and
negative values of n do not converge. Only when interpreted symmetri-
cally, as limN→∞

∑
|n|≤N 1/(z + n), does the cancellation of terms lead

to a convergent series as in (4) above.
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We prove (4) by showing that both π cotπz and the series have the
same structural properties. In fact, observe that if F (z) = π cotπz, then
F has the following three properties:

(i) F (z + 1) = F (z) whenever z is not an integer.

(ii) F (z) =
1
z

+ F0(z), where F0 is analytic near 0.

(iii) F (z) has simple poles at the integers, and no other singularities.

Then, we note that the function

∞∑
n=−∞

1
z + n

= lim
N→∞

∑
|n|≤N

1
z + n

also satisfies these same three properties. In fact, property (i) is simply
the observation that the passage from z to z + 1 merely shifts the terms
in the infinite sum. To be precise,∑

|n|≤N

1
z + 1 + n

=
1

z + 1 +N
− 1
z −N

+
∑

|n|≤N

1
z + n

.

Letting N tend to infinity proves the assertion. Properties (ii) and (iii)
are evident from the representation 1

z +
∑∞

n=1
2z

z2−n2 of the sum.
Therefore, the function defined by

∆(z) = F (z) −
∞∑

n=−∞

1
z + n

is periodic in the sense that ∆(z + 1) = ∆(z), and by (ii) the singularity
of ∆ at the origin is removable, and hence by periodicity the singularities
at all the integers are also removable; this implies that ∆ is entire.

To prove our formula, it will suffice to show that the function ∆ is
bounded in the complex plane. By the periodicity above, it is enough
to do so in the strip |Re(z)| ≤ 1/2. This is because every z′ ∈ C is of
the form z′ = z + k, where z is in the strip and k is an integer. Since ∆
is holomorphic, it is bounded in the rectangle |Im(z)| ≤ 1, and we need
only control the behavior of that function for |Im(z)| > 1. If Im(z) > 1
and z = x+ iy, then

cotπz = i
eiπz + e−iπz

eiπz − e−iπz
= i

e−2πy + e−2πix

e−2πy − e−2πix
,
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and in absolute value this quantity is bounded. Also

1
z

+
∞∑

n=1

2z
z2 − n2

=
1

x+ iy
+

∞∑
n=1

2(x+ iy)
x2 − y2 − n2 + 2ixy

;

therefore if y > 1, we have∣∣∣∣∣1z +
∞∑

n=1

2z
z2 − n2

∣∣∣∣∣ ≤ C + C

∞∑
n=1

y

y2 + n2
.

Now the sum on the right-hand side is majorized by∫ ∞

0

y

y2 + x2
dx ,

because the function y/(y2 + x2) is decreasing in x; moreover, as the
change of variables x 	→ yx shows, the integral is independent of y, and
hence bounded. By a similar argument ∆ is bounded in the strip where
Im(z) < −1, hence is bounded throughout the whole strip |Re(z)| ≤ 1/2.
Therefore ∆ is bounded in C, and by Liouville’s theorem, ∆(z) is con-
stant. The observation that ∆ is odd shows that this constant must be
0, and concludes the proof of formula (4).

To prove (3), we now let

G(z) =
sin πz
π

and P (z) = z

∞∏
n=1

(
1 − z2

n2

)
.

Proposition 3.2 and the fact that
∑

1/n2 <∞ guarantee that the prod-
uct P (z) converges, and that away from the integers we have

P ′(z)
P (z)

=
1
z

+
∞∑

n=1

2z
z2 − n2

.

Since G′(z)/G(z) = π cotπz, the cotangent formula (4) gives(
P (z)
G(z)

)′
=
P (z)
G(z)

[
P ′(z)
P (z)

− G′(z)
G(z)

]
= 0,

and so P (z) = cG(z) for some constant c. Dividing this identity by z,
and taking the limit as z → 0, we find c = 1.

Remark. Other proofs of (4) and (3) can be given by integrating
analogous identities for π2/(sinπz)2 derived in Exercise 12, Chapter 3,
and Exercise 7, Chapter 4. Still other proofs using Fourier series can be
found in the exercises of Chapters 3 and 5 of Book I.
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4 Weierstrass infinite products

We now turn to Weierstrass’s construction of an entire function with
prescribed zeros.

Theorem 4.1 Given any sequence {an} of complex numbers with
|an| → ∞ as n→ ∞, there exists an entire function f that vanishes at
all z = an and nowhere else. Any other such entire function is of the
form f(z)eg(z), where g is entire.

Recall that if a holomorphic function f vanishes at z = a, then the
multiplicity of the zero a is the integer m so that

f(z) = (z − a)mg(z),

where g is holomorphic and nowhere vanishing in a neighborhood of a.
Alternatively, m is the first non-zero power of z − a in the power series
expansion of f at a. Since, as before, we allow for repetitions in the
sequence {an}, the theorem actually guarantees the existence of entire
functions with prescribed zeros and with desired multiplicities.

To begin the proof, note first that if f1 and f2 are two entire functions
that vanish at all z = an and nowhere else, then f1/f2 has removable
singularities at all the points an. Hence f1/f2 is entire and vanishes
nowhere, so that there exists an entire function g with f1(z)/f2(z) =
eg(z), as we showed in Section 6 of Chapter 3. Therefore f1(z) = f2(z)eg(z)

and the last statement of the theorem is verified.
Hence we are left with the task of constructing a function that vanishes

at all the points of the sequence {an} and nowhere else. A naive guess,
suggested by the product formula for sin πz, is the product

∏
n (1 − z/an).

The problem is that this product converges only for suitable sequences
{an}, so we correct this by inserting exponential factors. These factors
will make the product converge without adding new zeros.

For each integer k ≥ 0 we define canonical factors by

E0(z) = 1 − z and Ek(z) = (1 − z)ez+z2/2+···+zk/k, for k ≥ 1.

The integer k is called the degree of the canonical factor.

Lemma 4.2 If |z| ≤ 1/2, then |1 −Ek(z)| ≤ c|z|k+1 for some c > 0.

Proof. If |z| ≤ 1/2, then with the logarithm defined in terms of the
power series, we have 1 − z = elog(1−z), and therefore

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = ew,
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where w = −
∑∞

n=k+1 z
n/n. Observe that since |z| ≤ 1/2 we have

|w| ≤ |z|k+1

∞∑
n=k+1

|z|n−k−1/n ≤ |z|k+1

∞∑
j=0

2−j ≤ 2|z|k+1.

In particular, we have |w| ≤ 1 and this implies that

|1 −Ek(z)| = |1 − ew| ≤ c′|w| ≤ c|z|k+1.

Remark. An important technical point is that the constant c in the
statement of the lemma can be chosen to be independent of k. In fact,
an examination of the proof shows that we may take c′ = e and then
c = 2e.

Suppose that we are given a zero of order m at the origin, and that
a1, a2 . . . are all non-zero. Then we define the Weierstrass product by

f(z) = zm

∞∏
n=1

En(z/an).

We claim that this function has the required properties; that is, f is
entire with a zero of order m at the origin, zeros at each point of the
sequence {an}, and f vanishes nowhere else.

Fix R > 0, and suppose that z belongs to the disc |z| < R. We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.

We can consider two types of factors in the formula defining f , with
the choice depending on whether |an| ≤ 2R or |an| > 2R. There are only
finitely many terms of the first kind (since |an| → ∞), and we see that
the finite product vanishes at all z = an with |an| < R. If |an| ≥ 2R, we
have |z/an| ≤ 1/2, hence the previous lemma implies

|1 −En(z/an)| ≤ c

∣∣∣∣ zan

∣∣∣∣n+1

≤ c

2n+1
.

Note that by the above remark, c does not depend on n. Therefore, the
product ∏

|an|≥2R

En(z/an)

defines a holomorphic function when |z| < R, and does not vanish in
that disc by the propositions in Section 3. This shows that the function
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f has the desired properties, and the proof of Weierstrass’s theorem is
complete.

5 Hadamard’s factorization theorem

The theorem of this section combines the results relating the growth of
a function to the number of zeros it possesses, and the above product
theorem. Weierstrass’s theorem states that a function that vanishes at
the points a1, a2, . . . takes the form

eg(z)zm

∞∏
n=1

En(z/an).

Hadamard refined this result by showing that in the case of functions
of finite order, the degree of the canonical factors can be taken to be
constant, and g is then a polynomial.

Recall that an entire function has an order of growth ≤ ρ if

|f(z)| ≤ AeB|z|ρ ,

and that the order of growth ρ0 of f is the infimum of all such ρ’s.
A basic result we proved earlier was that if f has order of growth ≤ ρ,

then

n(r) ≤ Crρ, for all large r,

and if a1, a2, . . . are the non-zero zeros of f , and s > ρ, then∑
|an|−s <∞.

Theorem 5.1 Suppose f is entire and has growth order ρ0. Let k be the
integer so that k ≤ ρ0 < k + 1. If a1, a2, . . . denote the (non-zero) zeros
of f , then

f(z) = eP (z)zm

∞∏
n=1

Ek(z/an),

where P is a polynomial of degree ≤ k, and m is the order of the zero of
f at z = 0.

Main lemmas

Here we gather a few lemmas needed in the proof of Hadamard’s theorem.
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Lemma 5.2 The canonical products satisfy

|Ek(z)| ≥ e−c|z|k+1
if |z| ≤ 1/2

and

|Ek(z)| ≥ |1 − z| e−c′|z|k if |z| ≥ 1/2.

Proof. If |z| ≤ 1/2 we can use the power series to define the logarithm
of 1 − z, so that

Ek(z) = elog(1−z)+
∑k

n=1 zn/n = e−
∑∞

n=k+1 zn/n = ew.

Since |ew| ≥ e−|w| and |w| ≤ c|z|k+1, the first part of the lemma follows.
For the second part, simply observe that if |z| ≥ 1/2, then

|Ek(z)| = |1 − z||ez+z2/2+···+zk/k|,

and that there exists c′ > 0 such that

|ez+z2/2+···+zk/k| ≥ e−|z+z2/2+···+zk/k| ≥ e−c′|z|k .

The inequality in the lemma when |z| ≥ 1/2 then follows from these
observations.

The key to the proof of Hadamard’s theorem consists of finding a lower
bound for the product of the canonical factors when z stays away from
the zeros {an}. Therefore, we shall first estimate the product from below,
in the complement of small discs centered at these points.

Lemma 5.3 For any s with ρ0 < s < k + 1, we have∣∣∣∣∣
∞∏

n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s ,

except possibly when z belongs to the union of the discs centered at an of
radius |an|−k−1, for n = 1, 2, 3, . . ..

Proof. The proof this lemma is a little subtle. First, we write

∞∏
n=1

Ek(z/an) =
∏

|an|≤2|z|
Ek(z/an)

∏
|an|>2|z|

Ek(z/an).



5. Hadamard’s factorization theorem 149

For the second product the estimate asserted above holds with no re-
striction on z. Indeed, by the previous lemma∣∣∣∣∣∣

∏
|an|>2|z|

Ek(z/an)

∣∣∣∣∣∣ =
∏

|an|>2|z|
|Ek(z/an)|

≥
∏

|an|>2|z|
e−c|z/an|k+1

≥ e−c|z|k+1∑
|an|>2|z| |an|−k−1

.

But |an| > 2|z| and s < k + 1, so we must have

|an|−k−1 = |an|−s|an|s−k−1 ≤ C|an|−s|z|s−k−1.

Therefore, the fact that
∑

|an|−s converges implies that∣∣∣∣∣∣
∏

|an|>2|z|
Ek(z/an)

∣∣∣∣∣∣ ≥ e−c|z|s

for some c > 0.
To estimate the first product, we use the second part of Lemma 5.2,

and write

(5)

∣∣∣∣∣∣
∏

|an|≤2|z|
Ek(z/an)

∣∣∣∣∣∣ ≥
∏

|an|≤2|z|

∣∣∣∣1 − z

an

∣∣∣∣ ∏
|an|≤2|z|

e−c′|z/an|k .

We now note that∏
|an|≤2|z|

e−c′|z/an|k = e−c′|z|k∑ |an|≤2|z| |an|−k

,

and again, we have |an|−k = |an|−s|an|s−k ≤ C|an|−s|z|s−k, thereby prov-
ing that ∏

|an|≤2|z|
e−c′|z/an|k ≥ e−c|z|s .

It is the estimate on the first product on the right-hand side of (5)
which requires the restriction on z imposed in the statement of the
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lemma. Indeed, whenever z does not belong to a disc of radius |an|−k−1

centered at an, we must have |an − z| ≥ |an|−k−1. Therefore

∏
|an|≤2|z|

∣∣∣∣1 − z

an

∣∣∣∣ = ∏
|an|≤2|z|

∣∣∣∣an − z

an

∣∣∣∣
≥

∏
|an|≤2|z|

|an|−k−1|an|−1

=
∏

|an|≤2|z|
|an|−k−2.

Finally, the estimate for the first product follows from the fact that

(k + 2)
∑

|an|≤2|z|
log |an| ≤ (k + 2)n(2|z|) log 2|z|

≤ c|z|s log 2|z|
≤ c′|z|s′

,

for any s′ > s, and the second inequality follows because n(2|z|) ≤ c|z|s
by Theorem 2.1. Since we restricted s to satisfy s > ρ0, we can take
an initial s sufficiently close to ρ0, so that the assertion of the lemma is
established (with s being replaced by s′).

Corollary 5.4 There exists a sequence of radii, r1, r2, . . ., with
rm → ∞, such that∣∣∣∣∣

∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s for |z| = rm.

Proof. Since
∑

|an|−k−1 <∞, there exists an integer N so that

∞∑
n=N

|an|−k−1 < 1/10.

Therefore, given any two consecutive large integers L and L+ 1, we can
find a positive number r with L ≤ r ≤ L+ 1, such that the circle of
radius r centered at the origin does not intersect the forbidden discs of
Lemma 5.3. For otherwise, the union of the intervals

In =
[
|an| −

1
|an|k+1

, |an| +
1

|an|k+1

]
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(which are of length 2|an|−k−1) would cover all the interval [L,L+ 1].
(See Figure 1.) This would imply 2

∑∞
n=N |an|−k−1 ≥ 1, which is a con-

tradiction. We can then apply the previous lemma with |z| = r to con-
clude the proof of the corollary.

I2

I3

a1

I1

a2

In

a3

an

Figure 1. The intervals In

Proof of Hadamard’s theorem

Let

E(z) = zm

∞∏
n=1

Ek(z/an).

To prove that E is entire, we repeat the argument in the proof of Theo-
rem 4.1; we take into account that by Lemma 4.2

|1 −Ek(z/an)| ≤ c

∣∣∣∣ zan

∣∣∣∣k+1

for all large n,

and that the series
∑

|an|−k−1 converges. (Recall ρ0 < s < k + 1.) More-
over, E has the zeros of f , therefore f/E is holomorphic and nowhere
vanishing. Hence

f(z)
E(z)

= eg(z)
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for some entire function g. By the fact that f has growth order ρ0, and
because of the estimate from below for E obtained in Corollary 5.4, we
have

eRe(g(z)) =
∣∣∣∣ f(z)
E(z)

∣∣∣∣ ≤ c′ec|z|s

for |z| = rm. This proves that

Re(g(z)) ≤ C|z|s, for |z| = rm.

The proof of Hadamard’s theorem is therefore complete if we can estab-
lish the following final lemma.

Lemma 5.5 Suppose g is entire and u = Re(g) satisfies

u(z) ≤ Crs whenever |z| = r

for a sequence of positive real numbers r that tends to infinity. Then g
is a polynomial of degree ≤ s.

Proof. We can expand g in a power series centered at the origin

g(z) =
∞∑

n=0

anz
n.

We have already proved in the last section of Chapter 3 (as a simple
application of Cauchy’s integral formulas) that

(6)
1
2π

∫ 2π

0

g(reiθ)e−inθ dθ =
{
anr

n if n ≥ 0
0 if n < 0.

By taking complex conjugates we find that

(7)
1
2π

∫ 2π

0

g(reiθ)e−inθ dθ = 0

whenever n > 0, and since 2u = g + g we add equations (6) and (7) to
obtain

anr
n =

1
π

∫ 2π

0

u(reiθ)e−inθ dθ, whenever n > 0.

For n = 0 we can simply take real parts of both sides of (6) to find that

2Re(a0) =
1
π

∫ 2π

0

u(reiθ) dθ.
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Now we recall the simple fact that whenever n �= 0, the integral of e−inθ

over any circle centered at the origin vanishes. Therefore

an =
1
πrn

∫ 2π

0

[u(reiθ) − Crs]e−inθ dθ when n > 0,

hence

|an| ≤
1
πrn

∫ 2π

0

[Crs − u(reiθ)] dθ ≤ 2Crs−n − 2Re(a0)r−n.

Letting r tend to infinity along the sequence given in the hypothesis of
the lemma proves that an = 0 for n > s. This completes the proof of the
lemma and of Hadamard’s theorem.

6 Exercises

1. Give another proof of Jensen’s formula in the unit disc using the functions
(called Blaschke factors)

ψα(z) =
α− z

1 − αz
.

[Hint: The function f/(ψz1 · · ·ψzN ) is nowhere vanishing.]

2. Find the order of growth of the following entire functions:

(a) p(z) where p is a polynomial.

(b) ebzn

for b 
= 0.

(c) eez

.

3. Show that if τ is fixed with Im(τ ) > 0, then the Jacobi theta function

Θ(z|τ ) =

∞∑
n=−∞

eπin2τe2πinz

is of order 2 as a function of z. Further properties of Θ will be studied in Chap-
ter 10.

[Hint: −n2t+ 2n|z| ≤ −n2t/2 when t > 0 and n ≥ 4|z|/t.]

4. Let t > 0 be given and fixed, and define F (z) by

F (z) =
∞∏

n=1

(1 − e−2πnte2πiz).

Note that the product defines an entire function of z.
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(a) Show that |F (z)| ≤ Aea|z|2 , hence F is of order 2.

(b) F vanishes exactly when z = −int+m for n ≥ 1 and n,m integers. Thus,
if zn is an enumeration of these zeros we have∑ 1

|zn|2 = ∞ but
∑ 1

|zn|2+ε
<∞.

[Hint: To prove (a), write F (z) = F1(z)F2(z) where

F1(z) =
N∏

n=1

(1 − e−2πnte2πiz) and F2(z) =
∞∏

n=N+1

(1 − e−2πnte2πiz).

Choose N ≈ c|z| with c appropriately large. Then, since( ∞∑
N+1

e−2πnt

)
e2π|z| ≤ 1 ,

one has |F2(z)| ≤ A. However,

|1 − e−2πnte2πiz| ≤ 1 + e2π|z| ≤ 2e2π|z|.

Thus |F1(z)| ≤ 2Ne2πN|z| ≤ ec′|z|2 . Note that a simple variant of the function F
arises as a factor in the triple product formula for the Jacobi theta function Θ,
taken up in Chapter 10.]

5. Show that if α > 1, then

Fα(z) =

∫ ∞

−∞
e−|t|αe2πizt dt

is an entire function of growth order α/(α− 1).

[Hint: Show that

−|t|α
2

+ 2π|z||t| ≤ c|z|α/(α−1)

by considering the two cases |t|α−1 ≤ A|z| and |t|α−1 ≥ A|z|, for an appropriate
constant A.]

6. Prove Wallis’s product formula

π

2
=

2 · 2
1 · 3 · 4 · 4

3 · 5 · · · 2m · 2m
(2m− 1) · (2m+ 1)

· · · .

[Hint: Use the product formula for sin z at z = π/2.]

7. Establish the following properties of infinite products.
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(a) Show that if
∑ |an|2 converges, then the product

∏
(1 + an) converges to a

non-zero limit if and only if
∑
an converges.

(b) Find an example of a sequence of complex numbers {an} such that
∑
an

converges but
∏

(1 + an) diverges.

(c) Also find an example such that
∏

(1 + an) converges and
∑
an diverges.

8. Prove that for every z the product below converges, and

cos(z/2) cos(z/4) cos(z/8) · · · =

∞∏
k=1

cos(z/2k) =
sin z

z
.

[Hint: Use the fact that sin 2z = 2 sin z cos z.]

9. Prove that if |z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =

∞∏
k=0

(1 + z2k

) =
1

1 − z
.

10. Find the Hadamard products for:

(a) ez − 1;

(b) cos πz.

[Hint: The answers are ez/2z
∏∞

n=1(1 + z2/4n2π2) and
∏∞

n=0(1 − 4z2/(2n+ 1)2),
respectively.]

11. Show that if f is an entire function of finite order that omits two values, then
f is constant. This result remains true for any entire function and is known as
Picard’s little theorem.

[Hint: If f misses a, then f(z) − a is of the form ep(z) where p is a polynomial.]

12. Suppose f is entire and never vanishes, and that none of the higher derivatives
of f ever vanish. Prove that if f is also of finite order, then f(z) = eaz+b for some
constants a and b.

13. Show that the equation ez − z = 0 has infinitely many solutions in C.

[Hint: Apply Hadamard’s theorem.]

14. Deduce from Hadamard’s theorem that if F is entire and of growth order ρ
that is non-integral, then F has infinitely many zeros.

15. Prove that every meromorphic function in C is the quotient of two entire
functions. Also, if {an} and {bn} are two disjoint sequences having no finite limit
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points, then there exists a meromorphic function in the whole complex plane that
vanishes exactly at {an} and has poles exactly at {bn}.

16. Suppose that

Qn(z) =

Nn∑
k=1

cnk z
k

are given polynomials for n = 1, 2, . . .. Suppose also that we are given a sequence of
complex numbers {an} without limit points. Prove that there exists a meromorphic
function f(z) whose only poles are at {an}, and so that for each n, the difference

f(z) −Qn

(
1

z − an

)
is holomorphic near an. In other words, f has a prescribed poles and principal
parts at each of these poles. This result is due to Mittag-Leffler.

17. Given two countably infinite sequences of complex numbers {ak}∞k=0 and
{bk}∞k=0, with limk→∞ |ak| = ∞, it is always possible to find an entire function F
that satisfies F (ak) = bk for all k.

(a) Given n distinct complex numbers a1, . . . , an, and another n complex num-
bers b1, . . . , bn, construct a polynomial P of degree ≤ n− 1 with

P (ai) = bi for i = 1, . . . , n.

(b) Let {ak}∞k=0 be a sequence of distinct complex numbers such that a0 = 0
and limk→∞ |ak| = ∞, and let E(z) denote a Weierstrass product associated
with {ak}. Given complex numbers {bk}∞k=0, show that there exist integers
mk ≥ 1 such that the series

F (z) =
b0

E′(z)
E(z)

z
+

∞∑
k=1

bk
E′(ak)

E(z)

z − ak

(
z

ak

)mk

defines an entire function that satisfies

F (ak) = bk for all k ≥ 0.

This is known as the Pringsheim interpolation formula.

7 Problems

1. Prove that if f is holomorphic in the unit disc, bounded and not identically
zero, and z1, z2, . . . , zn, . . . are its zeros (|zk| < 1), then∑

n

(1 − |zn|) <∞.
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[Hint: Use Jensen’s formula.]

2.∗ In this problem, we discuss Blaschke products, which are bounded analogues
in the disc of the Weierstrass products for entire functions.

(a) Show that for 0 < |α| < 1 and |z| ≤ r < 1 the inequality∣∣∣∣ α+ |α|z
(1 − αz)α

∣∣∣∣ ≤ 1 + r

1 − r

holds.

(b) Let {αn} be a sequence in the unit disc such that αn 
= 0 for all n and

∞∑
n=1

(1 − |αn|) <∞.

Note that this will be the case if {αn} are the zeros of a bounded holomorphic
function on the unit disc (see Problem 1). Show that the product

f(z) =
∞∏

n=1

αn − z

1 − αnz

|αn|
αn

converges uniformly for |z| ≤ r < 1, and defines a holomorphic function on
the unit disc having precisely the zeros αn and no other zeros. Show that
|f(z)| ≤ 1.

3.∗ Show that
∑ zn

(n!)α
is an entire function of order 1/α.

4.∗ Let F (z) =
∑∞

n=0 anz
n be an entire function of finite order. Then the growth

order of F is intimately linked with the growth of the coefficients an as n→ ∞.
In fact:

(a) Suppose |F (z)| ≤ Aea|z|ρ . Then

(8) lim sup
n→∞

|an|1/nn1/ρ <∞.

(b) Conversely, if (8) holds, then |F (z)| ≤ Aεe
aε|z|ρ+ε

, for every ε > 0.

[Hint: To prove (a), use Cauchy’s inequality

|an| ≤ A

rn
earρ

,

and the fact that the function u−neuρ

, 0 < u < ρ, attains its minimum value
en/ρ(ρ/n)n/ρ at u = n1/ρ/ρ1/ρ. Then, choose r in terms of n to achieve this mini-
mum.
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To establish (b), note that for |z| = r,

|F (z)| ≤
∑ cnrn

nn/ρ
≤
∑ cnrn

(n!)1/ρ

for some constant c, since nn ≥ n!. This yields a reduction to Problem 3.]



6 The Gamma and Zeta
Functions

It is no exaggeration to say that the gamma and zeta functions are
among the most important nonelementary functions in mathematics.
The gamma function Γ is ubiquitous in nature. It arises in a host of
calculations and is featured in a large number of identities that occur in
analysis. Part of the explanation for this probably lies in the basic struc-
tural property of the gamma function, which essentially characterizes
it: 1/Γ(s) is the (simplest) entire function1 which has zeros at exactly
s = 0,−1,−2, . . ..

The zeta function ζ (whose study, like that of the gamma function,
was initiated by Euler) plays a fundamental role in the analytic theory
of numbers. Its intimate connection with prime numbers comes about
via the identity for ζ(s):

∏
p

1
1 − p−s

=
∞∑

n=1

1
ns
,

where the product is over all primes. The behavior of ζ(s) for real s > 1,
with s tending to 1, was used by Euler to prove that

∑
p 1/p diverges,

and a similar reasoning for L-functions is at the starting point of the
proof of Dirichlet’s theorem on primes in arithmetic progression, as we
saw in Book I.

While there is no difficulty in seeing that ζ(s) is well-defined (and
analytic) when Re(s) > 1, it was Riemann who realized that the further
study of primes was bound up with the analytic (in fact, meromorphic)
continuation of ζ into the rest of the complex plane. Beyond this, we also
consider its remarkable functional equation, which reveals a symmetry
about the line Re(s) = 1/2, and whose proof is based on a corresponding
identity for the theta function. We also make a more detailed study of
the growth of ζ(s) near the line Re(s) = 1, which will be required in the
proof of the prime number theorem given in the next chapter.

1In keeping with the standard notation of the subject, we denote by s (instead of z)
the argument of the functions Γ and ζ.
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1 The gamma function

For s > 0, the gamma function is defined by

(1) Γ(s) =
∫ ∞

0

e−tts−1 dt.

The integral converges for each positive s because near t = 0 the func-
tion ts−1 is integrable, and for t large the convergence is guaranteed by
the exponential decay of the integrand. These observations allow us to
extend the domain of definition of Γ as follows.

Proposition 1.1 The gamma function extends to an analytic function
in the half-plane Re(s) > 0, and is still given there by the integral for-
mula (1).

Proof. It suffices to show that the integral defines a holomorphic
function in every strip

Sδ,M = {δ < Re(s) < M} ,

where 0 < δ < M <∞. Note that if σ denotes the real part of s, then
|e−tts−1| = e−ttσ−1, so that the integral

Γ(s) =
∫ ∞

0

e−tts−1 dt ,

which is defined by the limit limε→0

∫ 1/ε

ε
e−tts−1 dt, converges for each

s ∈ Sδ,M . For ε > 0, let

Fε(s) =
∫ 1/ε

ε

e−tts−1 dt.

By Theorem 5.4 in Chapter 2, the function Fε is holomorphic in the
strip Sδ,M . By Theorem 5.2, also of Chapter 2, it suffices to show that
Fε converges uniformly to Γ on the strip Sδ,M . To see this, we first
observe that

|Γ(s) − Fε(s)| ≤
∫ ε

0

e−ttσ−1 dt+
∫ ∞

1/ε

e−ttσ−1 dt.

The first integral converges uniformly to 0, as ε tends to 0 since it can
be easily estimated by εδ/δ whenever 0 < ε < 1. The second integral
converges uniformly to 0 as well, since∣∣∣∣∫ ∞

1/ε

e−ttσ−1 dt

∣∣∣∣ ≤ ∫ ∞

1/ε

e−ttM−1dt ≤ C

∫ ∞

1/ε

e−t/2 dt→ 0,
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and the proof is complete.

1.1 Analytic continuation

Despite the fact that the integral defining Γ is not absolutely convergent
for other values of s, we can go further and prove that there exists a
meromorphic function defined on all of C that equals Γ in the half-plane
Re(s) > 0. In the same sense as in Chapter 2, we say that this function
is the analytic continuation2 of Γ, and we therefore continue to denote it
by Γ.

To prove the asserted analytic extension to a meromorphic function,
we need a lemma, which incidentally exhibits an important property
of Γ.

Lemma 1.2 If Re(s) > 0, then

(2) Γ(s+ 1) = sΓ(s).

As a consequence Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

Proof. Integrating by parts in the finite integrals gives∫ 1/ε

ε

d

dt
(e−tts) dt = −

∫ 1/ε

ε

e−tts dt+ s

∫ 1/ε

ε

e−tts−1 dt,

and the desired formula (2) follows by letting ε tend to 0, and noting
that the left-hand side vanishes because e−tts → 0 as t tends to 0 or ∞.
Now it suffices to check that

Γ(1) =
∫ ∞

0

e−t dt =
[
−e−t

]∞
0

= 1 ,

and to apply (2) successively to find that Γ(n+ 1) = n!.

Formula (2) in the lemma is all we need to give a proof of the following
theorem.

Theorem 1.3 The function Γ(s) initially defined for Re(s) > 0 has an
analytic continuation to a meromorphic function on C whose only sin-
gularities are simple poles at the negative integers s = 0,−1, . . . . The
residue of Γ at s = −n is (−1)n/n!.

2Uniqueness of the analytic continuation is guaranteed since the complement of the
poles of a meromorphic function forms a connected set.
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Proof. It suffices to extend Γ to each half-plane Re(s) > −m, where
m ≥ 1 is an integer. For Re(s) > −1, we define

F1(s) =
Γ(s+ 1)

s
.

Since Γ(s+ 1) is holomorphic in Re(s) > −1, we see that F1 is meromor-
phic in that half-plane, with the only possible singularity a simple pole
at s = 0. The fact that Γ(1) = 1 shows that F1 does in fact have a simple
pole at s = 0 with residue 1. Moreover, if Re(s) > 0, then

F1(s) =
Γ(s+ 1)

s
= Γ(s)

by the previous lemma. So F1 extends Γ to a meromorphic function on
the half-plane Re(s) > −1. We can now continue in this fashion by defin-
ing a meromorphic Fm for Re(s) > −m that agrees with Γ on Re(s) > 0.
For Re(s) > −m, where m is an integer ≥ 1, define

Fm(s) =
Γ(s+m)

(s+m− 1)(s+m− 2) · · · s .

The function Fm is meromorphic in Re(s) > −m and has simple poles
at s = 0,−1,−2, . . . ,−m+ 1 with residues

ress=−nFm(s) =
Γ(−n+m)

(m− 1 − n)!(−1)(−2) · · · (−n)

=
(m− n− 1)!

(m− 1 − n)!(−1)(−2) · · · (−n)

=
(−1)n

n!
.

Successive applications of the lemma show that Fm(s) = Γ(s) for Re(s) >
0. By uniqueness, this also means that Fm = Fk for 1 ≤ k ≤ m on the
domain of definition of Fk. Therefore, we have obtained the desired
continuation of Γ.

Remark. We have already proved that Γ(s+ 1) = sΓ(s) whenever
Re(s) > 0. In fact, by analytic continuation, this formula remains true
whenever s �= 0,−1,−2, . . ., that is, whenever s is not a pole of Γ. This
is because both sides of the formula are holomorphic in the complement
of the poles of Γ and are equal when Re(s) > 0. Actually, one can go
further, and note that if s is a negative integer s = −n with n ≥ 1, then
both sides of the formula are infinite and moreover

ress=−nΓ(s+ 1) = −n ress=−nΓ(s).
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Finally, note that when s = 0 we have Γ(1) = lims→0 sΓ(s).

An alternate proof of Theorem 1.3, which is interesting in its own right
and whose ideas recur later, is obtained by splitting the integral for Γ(s)
defined on Re(s) > 0 as follows:

Γ(s) =
∫ 1

0

e−tts−1 dt +
∫ ∞

1

e−tts−1 dt.

The integral on the far right defines an entire function; also expanding
e−t in a power series and integrating term by term gives∫ 1

0

e−tts−1 dt =
∞∑

n=0

(−1)n

n!(n+ s)
.

Therefore

(3) Γ(s) =
∞∑

n=0

(−1)n

n!(n+ s)
+
∫ ∞

1

e−tts−1 dt for Re(s) > 0.

Finally, the series defines a meromorphic function on C with poles at
the negative integers and residue (−1)n/n! at s = −n. To prove this, we
argue as follows. For a fixed R > 0 we may split the sum in two parts

∞∑
n=0

(−1)n

n!(n+ s)
=

N∑
n=0

(−1)n

n!(n+ s)
+

∞∑
n=N+1

(−1)n

n!(n+ s)
,

where N is an integer chosen so that N > 2R. The first sum, which is
finite, defines a meromorphic function in the disc |s| < R with poles at
the desired points and the correct residues. The second sum converges
uniformly in that disc, hence defines a holomorphic function there, since
n > N > 2R and |n+ s| ≥ R imply∣∣∣∣ (−1)n

n!(n+ s)

∣∣∣∣ ≤ 1
n!R

.

Since R was arbitrary, we conclude that the series in (3) has the desired
properties.

In particular, the relation (3) now holds on all of C.

1.2 Further properties of Γ

The following identity reveals the symmetry of Γ about the line Re(s) =
1/2.
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Theorem 1.4 For all s ∈ C,

(4) Γ(s)Γ(1 − s) =
π

sinπs
.

Observe that Γ(1 − s) has simple poles at the positive integers s =
1, 2, 3, . . ., so that Γ(s)Γ(1 − s) is a meromorphic function on C with
simple poles at all the integers, a property also shared by π/ sinπs.

To prove the identity, it suffices to do so for 0 < s < 1 since it then
holds on all of C by analytic continuation.

Lemma 1.5 For 0 < a < 1,
∫ ∞

0

va−1

1 + v
dv =

π

sinπa
.

Proof. We observe first that∫ ∞

0

va−1

1 + v
dv =

∫ ∞

−∞

eax

1 + ex
dx ,

which follows by making the change of variables v = ex. However, using
contour integration, we saw in Example 2 of Section 2.1 in Chapter 3,
that the second integral equals π/ sinπa, as desired.

To establish the theorem, we first note that for 0 < s < 1 we may write

Γ(1 − s) =
∫ ∞

0

e−uu−s du = t

∫ ∞

0

e−vt(vt)−s dv ,

where for t > 0 we made the change of variables vt = u. This trick then
gives

Γ(1 − s)Γ(s) =
∫ ∞

0

e−tts−1Γ(1 − s) dt

=
∫ ∞

0

e−tts−1

(
t

∫ ∞

0

e−vt(vt)−sdv

)
dt

=
∫ ∞

0

∫ ∞

0

e−t[1+v]v−s dvdt

=
∫ ∞

0

v−s

1 + v
dv

=
π

sinπ(1 − s)

=
π

sinπs
,

and the theorem is proved.
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In particular, by putting s = 1/2, and noting that Γ(s) > 0 whenever
s > 0, we find that

Γ(1/2) =
√
π.

We continue our study of the gamma function by considering its recip-
rocal, which turns out to be an entire function with remarkably simple
properties.

Theorem 1.6 The function Γ has the following properties:

(i) 1/Γ(s) is an entire function of s with simple zeros at s=0,−1,−2,. . .
and it vanishes nowhere else.

(ii) 1/Γ(s) has growth ∣∣∣∣ 1
Γ(s)

∣∣∣∣ ≤ c1e
c2|s| log |s|.

Therefore, 1/Γ is of order 1 in the sense that for every ε > 0, there
exists a bound c(ε) so that∣∣∣∣ 1

Γ(s)

∣∣∣∣ ≤ c(ε)ec2|s|1+ε

.

Proof. By the theorem we may write

(5)
1

Γ(s)
= Γ(1 − s)

sinπs
π

,

so the simple poles of Γ(1 − s), which are at s = 1, 2, 3, . . . are cancelled
by the simple zeros of sinπs, and therefore 1/Γ is entire with simple zeros
at s = 0,−1,−2,−3, . . ..

To prove the estimate, we begin by showing that∫ ∞

1

e−ttσ dt ≤ e(σ+1) log(σ+1)

whenever σ = Re(s) is positive. Choose n so that σ ≤ n ≤ σ + 1. Then∫ ∞

1

e−ttσ dt ≤
∫ ∞

0

e−ttn dt

= n!

≤ nn

= en log n

≤ e(σ+1) log(σ+1).
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Since the relation (3) holds on all of C, we see from (5) that

1
Γ(s)

=

( ∞∑
n=0

(−1)n

n!(n+ 1 − s)

)
sinπs
π

+
(∫ ∞

1

e−tt−s dt

)
sinπs
π

.

However, from our previous observation,∣∣∣∣∫ ∞

1

e−tt−s dt

∣∣∣∣ ≤ ∫ ∞

1

e−tt|σ| dt ≤ e(|σ|+1) log(|σ|+1),

and because | sin πs| ≤ eπ|s| (by Euler’s formula for the sine function)
we find that the second term in the formula for 1/Γ(s) is dominated by
ce(|s|+1) log(|s|+1)eπ|s|, which is itself majorized by c1ec2|s| log |s|. Next, we
consider the term

∞∑
n=0

(−1)n

n!(n+ 1 − s)
sin πs
π

.

There are two cases: |Im(s)| > 1 and |Im(s)| ≤ 1. In the first case, this
expression is dominated in absolute value by ceπ|s|. If |Im(s)| ≤ 1, we
choose k to be the integer so that k − 1/2 ≤ Re(s) < k + 1/2. Then if
k ≥ 1,

∞∑
n=0

(−1)n

n!(n+ 1 − s)
sin πs
π

= (−1)k−1 sinπs
(k − 1)!(k − s)π

+

+
∑

n�=k−1

(−1)n sinπs
n!(n+ 1 − s)π

.

Both terms on the right are bounded; the first because sinπs vanishes
at s = k, and the second because the sum is majorized by c

∑
1/n!.

When k ≤ 0, then Re(s) < 1/2 by our supposition, and
∑∞

n=0
(−1)n

n!(n+1−s)

is again bounded by c
∑

1/n!. This concludes the proof of the theorem.

The fact that 1/Γ satisfies the type of growth conditions discussed in
Chapter 5 leads naturally to the product formula for the function 1/Γ,
which we treat next.

Theorem 1.7 For all s ∈ C,

1
Γ(s)

= eγss

∞∏
n=1

(
1 +

s

n

)
e−s/n.
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The real number γ, which is known as Euler’s constant, is defined
by

γ = lim
N→∞

N∑
n=1

1
n
− logN.

The existence of the limit was already proved in Proposition 3.10, Chap-
ter 8 of Book I, but we shall repeat the argument here for completeness.
Observe that

N∑
n=1

1
n
− logN =

N∑
n=1

1
n
−
∫ N

1

1
x
dx =

N−1∑
n=1

∫ n+1

n

[
1
n
− 1
x

]
dx+

1
N
,

and by the mean value theorem applied to f(x) = 1/x we have

∣∣∣∣ 1n − 1
x

∣∣∣∣ ≤ 1
n2

for all n ≤ x ≤ n+ 1.

Hence

∞∑
n=1

1
n
− logN =

N−1∑
n=1

an +
1
N

where |an| ≤ 1/n2. Therefore
∑
an converges, which proves that the

limit defining γ exists. We may now proceed with the proof of the fac-
torization of 1/Γ.

Proof. By the Hadamard factorization theorem and the fact that 1/Γ
is entire, of growth order 1, and has simple zeros at s = 0,−1,−2, . . ., we
can expand 1/Γ in a Weierstrass product of the form

1
Γ(s)

= eAs+Bs

∞∏
n=1

(
1 +

s

n

)
e−s/n.

Here A and B are two constants that are to be determined. Remembering
that sΓ(s) → 1 as s→ 0, we find that B = 0 (or some integer multiple
of 2πi, which of course gives the same result). Putting s = 1, and using
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the fact that Γ(1) = 1 yields

e−A =
∞∏

n=1

(
1 +

1
n

)
e−1/n

= lim
N→∞

N∏
n=1

(
1 +

1
n

)
e−1/n

= lim
N→∞

e
∑N

n=1[log(1+1/n)−1/n]

= lim
N→∞

e−(∑N
n=1 1/n)+log N+log(1+1/N)

= e−γ .

Therefore A = γ + 2πik for some integer k. Since Γ(s) is real whenever
s is real, we must have k = 0, and the argument is complete.

Note that the proof shows that the function 1/Γ is essentially char-
acterized (up to two normalizing constants) as the entire function that
has:

(i) simple zeros at s = 0,−1,−2, . . . and vanishes nowhere else, and

(ii) order of growth ≤ 1.

Observe that sin πs has a similar characterization (except the zeros are
now at all the integers). However, while sinπs has a stricter growth esti-
mate of the form sin πs = O

(
ec|s|), this estimate (without the logarithm

in the exponent) does not hold for 1/Γ(s) as Exercise 12 demonstrates.

2 The zeta function

The Riemann zeta function is initially defined for real s > 1 by the
convergent series

ζ(s) =
∞∑

n=1

1
ns
.

As in the case of the gamma function, ζ can be continued into the com-
plex plane. There are several proofs of this fact, and we present in the
next section the one that relies on the functional equation of ζ.

2.1 Functional equation and analytic continuation

In parallel to the gamma function, we first provide a simple extension of
ζ to a half-plane in C.
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Proposition 2.1 The series defining ζ(s) converges for Re(s) > 1, and
the function ζ is holomorphic in this half-plane.

Proof. If s = σ + it where σ and t are real, then

|n−s| = |e−s log n| = e−σ log n = n−σ .

As a consequence, if σ > 1 + δ > 1 the series defining ζ is uniformly
bounded by

∑∞
n=1 1/n1+δ, which converges. Therefore, the series

∑
1/ns

converges uniformly on every half-plane Re(s) > 1 + δ > 1, and therefore
defines a holomorphic function in Re(s) > 1.

The analytic continuation of ζ to a meromorphic function in C is more
subtle than in the case of the gamma function. The proof we present
here relates ζ to Γ and another important function.

Consider the theta function, already introduced in Chapter 4, which
is defined for real t > 0 by

ϑ(t) =
∞∑

n=−∞
e−πn2t.

An application of the Poisson summation formula (Theorem 2.4 in Chap-
ter 4) gave the functional equation satisfied by ϑ, namely

ϑ(t) = t−1/2ϑ(1/t).

The growth and decay of ϑ we shall need are

ϑ(t) ≤ Ct−1/2 as t→ 0,

and

|ϑ(t) − 1| ≤ Ce−πt for some C > 0, and all t ≥ 1.

The inequality for t tending to zero follows from the functional equation,
while the behavior as t tends to infinity follows from the fact that∑

n≥1

e−πn2t ≤
∑
n≥1

e−πnt ≤ Ce−πt

for t ≥ 1.
We are now in a position to prove an important relation among ζ, Γ

and ϑ.
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Theorem 2.2 If Re(s) > 1, then

π−s/2Γ(s/2)ζ(s) =
1
2

∫ ∞

0

u(s/2)−1[ϑ(u)− 1] du.

Proof. This and further arguments are based on the observation that

(6)
∫ ∞

0

e−πn2uu(s/2)−1 du = π−s/2Γ(s/2)n−s, if n ≥ 1.

Indeed, if we make the change of variables u = t/πn2 in the integral, the
left-hand side becomes(∫ ∞

0

e−tt(s/2)−1 dt

)
(πn2)−s/2,

which is precisely π−s/2Γ(s/2)n−s. Next, note that

ϑ(u) − 1
2

=
∞∑

n=1

e−πn2u.

The estimates for ϑ given before the statement of the theorem justify an
interchange of the infinite sum with the integral, and thus

1
2

∫ ∞

0

u(s/2)−1[ϑ(u) − 1] du =
∞∑

n=1

∫ ∞

0

u(s/2)−1e−πn2u du

= π−s/2Γ(s/2)
∞∑

n=1

n−s

= π−s/2Γ(s/2)ζ(s),

as was to be shown.

In view of this, we now consider the modification of the ζ function
called the xi function, which makes the former appear more symmetric.
It is defined for Re(s) > 1 by

(7) ξ(s) = π−s/2Γ(s/2)ζ(s).

Theorem 2.3 The function ξ is holomorphic for Re(s) > 1 and has an
analytic continuation to all of C as a meromorphic function with simple
poles at s = 0 and s = 1. Moreover,

ξ(s) = ξ(1 − s) for all s ∈ C.
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Proof. The idea of the proof is to use the functional equation for ϑ,
namely

∞∑
n=−∞

e−πn2u = u−1/2

∞∑
n=−∞

e−πn2/u, u > 0.

We then could multiply both sides by u(s/2)−1 and try to integrate in
u. Disregarding the terms corresponding to n = 0 (which produce infini-
ties in both sums), we would get the desired equality once we invoked
formula (6), and the parallel formula obtained by making the change of
variables u 	→ 1/u. The actual proof requires a little more work and goes
as follows.

Let ψ(u) = [ϑ(u) − 1]/2. The functional equation for the theta func-
tion, namely ϑ(u) = u−1/2ϑ(1/u), implies

ψ(u) = u−1/2ψ(1/u) +
1

2u1/2
− 1

2
.

Now, by Theorem 2.2 for Re(s) > 1, we have

π−s/2Γ(s/2)ζ(s) =
∫ ∞

0

u(s/2)−1ψ(u) du

=
∫ 1

0

u(s/2)−1ψ(u) du+
∫ ∞

1

u(s/2)−1ψ(u) du

=
∫ 1

0

u(s/2)−1

[
u−1/2ψ(1/u) +

1
2u1/2

− 1
2

]
du+

+
∫ ∞

1

u(s/2)−1ψ(u) du

=
1

s− 1
− 1
s

+
∫ ∞

1

(
u(−s/2)−1/2 + u(s/2)−1

)
ψ(u) du

whenever Re(s) > 1. Therefore

ξ(s) =
1

s− 1
− 1
s

+
∫ ∞

1

(
u(−s/2)−1/2 + u(s/2)−1

)
ψ(u) du.

Since the function ψ has exponential decay at infinity, the integral above
defines an entire function, and we conclude that ξ has an analytic con-
tinuation to all of C with simple poles at s = 0 and s = 1. Moreover, it is
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immediate that the integral remains unchanged if we replace s by 1 − s,
and the same is true for the sum of the two terms 1/(s− 1) − 1/s. We
conclude that ξ(s) = ξ(1 − s) as was to be shown.

From the identity we have proved for ξ we obtain the desired result for
the zeta function: its analytic continuation and its functional equation.

Theorem 2.4 The zeta function has a meromorphic continuation into
the entire complex plane, whose only singularity is a simple pole at s = 1.

Proof. A look at (7) provides the meromorphic continuation of ζ,
namely

ζ(s) = πs/2 ξ(s)
Γ(s/2)

.

Recall that 1/Γ(s/2) is entire with simple zeros at 0,−2,−4, . . ., so the
simple pole of ξ(s) at the origin is cancelled by the corresponding zero
of 1/Γ(s/2). As a consequence, the only singularity of ζ is a simple pole
at s = 1.

We shall now present a more elementary approach to the analytic
continuation of the zeta function, which easily leads to its extension in
the half-plane Re(s) > 0. This method will be useful in studying the
growth properties of ζ near the line Re(s) = 1 (which will be needed in
the next chapter). The idea behind it is to compare the sum

∑∞
n=1 n

−s

with the integral
∫∞
1
x−s dx.

Proposition 2.5 There is a sequence of entire functions {δn(s)}∞n=1

that satisfy the estimate |δn(s)| ≤ |s|/nσ+1, where s = σ + it, and such
that

(8)
∑

1≤n<N

1
ns

−
∫ N

1

dx

xs
=
∑

1≤n<N

δn(s),

whenever N is an integer > 1.

This proposition has the following consequence.

Corollary 2.6 For Re(s) > 0 we have

ζ(s) − 1
s− 1

= H(s),

where H(s) =
∑∞

n=1 δn(s) is holomorphic in the half-plane Re(s) > 0.
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To prove the proposition we compare
∑

1≤n < N n−s with∑
1≤n<N

∫ n+1

n
x−s dx, and set

(9) δn(s) =
∫ n+1

n

[
1
ns

− 1
xs

]
dx.

The mean-value theorem applied to f(x) = x−s yields∣∣∣∣ 1
ns

− 1
xs

∣∣∣∣ ≤ |s|
nσ+1

, whenever n ≤ x ≤ n+ 1.

Therefore |δn(s)| ≤ |s|/nσ+1, and since∫ N

1

dx

xs
=
∑

1≤n<N

∫ n+1

n

dx

xs
,

the proposition is proved.
Turning to the corollary, we assume first that Re(s) > 1. We let N

tend to infinity in formula (8) of the proposition, and observe that by the
estimate |δn(s)| ≤ |s|/nσ+1 we have the uniform convergence of the se-
ries

∑
δn(s) (in any half-plane Re(s) ≥ δ when δ > 0). Since Re(s) > 1,

the series
∑
n−s converges to ζ(s), and this proves the assertion when

Re(s) > 1. The uniform convergence also shows that
∑
δn(s) is holo-

morphic when Re(s) > 0, and thus shows that ζ(s) is extendable to that
half-plane, and that the identity continues to hold there.

Remark. The idea described above can be developed step by step to
yield the continuation of ζ into the entire complex plane, as shown in
Problems 2 and 3. Another argument giving the full analytic continua-
tion of ζ is outlined in Exercises 15 and 16.

As an application of the proposition we can show that the growth
of ζ(s) near the line Re(s) = 1 is “mild.” Recall that when Re(s) > 1,
we have |ζ(s)| ≤

∑∞
n=1 n

−σ , and so ζ(s) is bounded in any half-plane
Re(s) ≥ 1 + δ, with δ > 0. We shall see that on the line Re(s) = 1, |ζ(s)|
is majorized by |t|ε, for every ε > 0, and that the growth near the line is
not much worse. The estimates below are not optimal. In fact, they are
rather crude but suffice for what is needed later on.

Proposition 2.7 Suppose s = σ + it with σ, t ∈ R. Then for each σ0,
0 ≤ σ0 ≤ 1, and every ε > 0, there exists a constant cε so that

(i) |ζ(s)| ≤ cε|t|1−σ0+ε, if σ0 ≤ σ and |t| ≥ 1.
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(ii) |ζ′(s)| ≤ cε|t|ε, if 1 ≤ σ and |t| ≥ 1.

In particular, the proposition implies that ζ(1 + it) = O(|t|ε) as |t|
tends to infinity,3 and the same estimate also holds for ζ′. For the proof,
we use Corollary 2.6. Recall the estimate |δn(s)| ≤ |s|/nσ+1. We also
have the estimate |δn(s)| ≤ 2/nσ, which follows from the expression for
δn(s) given by (9) and the fact that |n−s| = n−σ and |x−s| ≤ n−σ if
x ≥ n. We then combine these two estimates for |δn(s)| via the observa-
tion that A = AδA1−δ , to obtain the bound

|δn(s)| ≤
(

|s|
nσ0+1

)δ ( 2
nσ0

)1−δ

≤ 2|s|δ
nσ0+δ

,

as long as δ ≥ 0. Now choose δ = 1 − σ0 + ε and apply the identity in
Corollary 2.6. Then, with σ = Re(s) ≥ σ0, we find

|ζ(s)| ≤
∣∣∣∣ 1
s− 1

∣∣∣∣+ 2|s|1−σ0+ε

∞∑
n=1

1
n1+ε

,

and conclusion (i) is proved. The second conclusion is actually a conse-
quence of the first by a slight modification of Exercise 8 in Chapter 2. For
completeness we sketch the argument. By the Cauchy integral formula,

ζ′(s) =
1

2πr

∫ 2π

0

ζ(s+ reiθ)eiθ dθ,

where the integration is taken over a circle of radius r centered at the
point s. Now choose r = ε and observe that this circle lies in the half-
plane Re(s) ≥ 1 − ε, and so (ii) follows as a consequence of (i) on replac-
ing 2ε by ε.

3 Exercises

1. Prove that

Γ(s) = lim
n→∞

nsn!

s(s+ 1) · · · (s+ n)

whenever s 
= 0,−1,−2, . . ..

[Hint: Use the product formula for 1/Γ, and the definition of the Euler constant γ.]

2. Prove that
∞∏

n=1

n(n+ a+ b)

(n+ a)(n+ b)
=

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)

3The reader should recall the O notation which was introduced at the end of Chapter 1.
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whenever a and b are positive. Using the product formula for sin πs, give another
proof that Γ(s)Γ(1 − s) = π/ sin πs.

3. Show that Wallis’s product formula can be written as√
π

2
= lim

n→∞
22n(n!)2

(2n+ 1)!
(2n+ 1)1/2.

As a result, prove the following identity:

Γ(s)Γ(s+ 1/2) =
√
π21−2sΓ(2s).

4. Prove that if we take

f(z) =
1

(1 − z)α
, for |z| < 1

(defined in terms of the principal branch of the logarithm), where α is a fixed
complex number, then

f(z) =
∞∑

n=0

an(α)zn

with

an(α) ∼ 1

Γ(α)
nα−1 as n→ ∞.

5. Use the fact that Γ(s)Γ(1 − s) = π/ sin πs to prove that

|Γ(1/2 + it)| =

√
2π

eπt + e−πt
, whenever t ∈ R.

6. Show that

1 +
1

3
+

1

5
+ · · · + 1

2n− 1
− 1

2
log n→ γ

2
+ log 2,

where γ is Euler’s constant.

7. The Beta function is defined for Re(α) > 0 and Re(β) > 0 by

B(α, β) =

∫ 1

0

(1 − t)α−1tβ−1 dt.

(a) Prove that B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.
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(b) Show that B(α, β) =

∫ ∞

0

uα−1

(1 + u)α+β
du.

[Hint: For part (a), note that

Γ(α)Γ(β) =

∫ ∞

0

∫ ∞

0

tα−1sβ−1e−t−s dtds,

and make the change of variables s = ur, t = u(1 − r).]

8. The Bessel functions arise in the study of spherical symmetries and the Fourier
transform. See Chapter 6 in Book I. Prove that the following power series identity
holds for Bessel functions of real order ν > −1/2:

Jν(x) =
(x/2)ν

Γ(ν + 1/2)
√
π

∫ 1

−1

eixt(1 − t2)ν−(1/2) dt =
(x

2

)ν
∞∑

m=0

(−1)m
(

x2

4

)m

m!Γ(ν +m+ 1)

whenever x > 0. In particular, the Bessel function Jν satisfies the ordinary differ-
ential equation

d2Jν

dx2
+

1

x

dJν

dx
+

(
1 − ν2

x2

)
Jν = 0.

[Hint: Expand the exponential eixt in a power series, and express the remaining
integrals in terms of the gamma function, using Exercise 7.]

9. The hypergeometric series F (α, β, γ; z) was defined in Exercise 16 of Chapter 1.
Show that

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1 − t)γ−β−1(1 − zt)−α dt.

Here α > 0, β > 0, γ > β, and |z| < 1.
Show as a result that the hypergeometric function, initially defined by a power

series convergent in the unit disc, can be continued analytically to the complex
plane slit along the half-line [1,∞).

Note that

log(1 − z) = −zF (1, 1, 2; z),

ez = limβ→∞ F (1, β, 1; z/β),

(1 − z)−α = F (α, 1, 1; z).

[Hint: To prove the integral identity, expand (1 − zt)−α as a power series.]

10. An integral of the form

F (z) =

∫ ∞

0

f(t)tz−1 dt
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is called a Mellin transform, and we shall write M(f)(z) = F (z). For example,
the gamma function is the Mellin transform of the function e−t.

(a) Prove that

M(cos)(z) =

∫ ∞

0

cos(t)tz−1 dt = Γ(z) cos
(
π
z

2

)
for 0 < Re(z) < 1,

and

M(sin)(z) =

∫ ∞

0

sin(t)tz−1 dt = Γ(z) sin
(
π
z

2

)
for 0 < Re(z) < 1.

(b) Show that the second of the above identities is valid in the larger strip
−1 < Re(z) < 1, and that as a consequence, one has∫ ∞

0

sin x

x
dx =

π

2
and

∫ ∞

0

sin x

x3/2
dx =

√
2π.

This generalizes the calculation in Exercise 2 of Chapter 2.

[Hint: For the first part, consider the integral of the function f(w) = e−wwz−1

around the contour illustrated in Figure 1. Use analytic continuation to prove the
second part.]

0 Rε

Figure 1. The contour in Exercise 10

11. Let f(z) = eaze−ez

where a > 0. Observe that in the strip {x+ iy : |y| < π}
the function f(x+ iy) is exponentially decreasing as |x| tends to infinity. Prove
that

f̂(ξ) = Γ(a+ iξ), for all ξ ∈ R.

12. This exercise gives two simple observations about 1/Γ.
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(a) Show that 1/|Γ(s)| is not O(ec|s|) for any c > 0. [Hint: If s = −k − 1/2,
where k is a positive integer, then |1/Γ(s)| ≥ k!/π.]

(b) Show that there is no entire function F (s) with F (s) = O(ec|s|) that has
simple zeros at s = 0,−1,−2, . . . ,−n, . . ., and that vanishes nowhere else.

13. Prove that

d2 log Γ(s)

ds2
=

∞∑
n=0

1

(s+ n)2

whenever s is a positive number. Show that if the left-hand side is interpreted
as (Γ′/Γ)′, then the above formula also holds for all complex numbers s with
s 
= 0,−1,−2, . . ..

14. This exercise gives an asymptotic formula for log n!. A more refined asymptotic
formula for Γ(s) as s→ ∞ (Stirling’s formula) is given in Appendix A.

(a) Show that

d

dx

∫ x+1

x

log Γ(t) dt = log x, for x > 0,

and as a result ∫ x+1

x

log Γ(t) dt = x log x− x+ c.

(b) Show as a consequence that log Γ(n) ∼ n log n as n→ ∞. In fact, prove
that log Γ(n) ∼ n log n+O(n) as n→ ∞. [Hint: Use the fact that Γ(x) is
monotonically increasing for all large x.]

15. Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx.

[Hint: Write 1/(ex − 1) =
∑∞

n=1 e
−nx.]

16. Use the previous exercise to give another proof that ζ(s) is continuable in the
complex plane with only singularity a simple pole at s = 1.

[Hint: Write

ζ(s) =
1

Γ(s)

∫ 1

0

xs−1

ex − 1
dx+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx.
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The second integral defines an entire function, while∫ 1

0

xs−1

ex − 1
dx =

∞∑
m=0

Bm

m!(s+m− 1)
,

where Bm denotes the mth Bernoulli number defined by

x

ex − 1
=

∞∑
m=0

Bm

m!
xm.

Then B0 = 1, and since z/(ez − 1) is holomorphic for |z| < 2π, we must have
lim supm→∞ |Bm/m!|1/m = 1/2π.]

17. Let f be an indefinitely differentiable function on R that has compact support,
or more generally, let f belong to the Schwartz space.4 Consider

I(s) =
1

Γ(s)

∫ ∞

0

f(x)x−1+s dx.

(a) Observe that I(s) is holomorphic for Re(s) > 0. Prove that I has an analytic
continuation as an entire function in the complex plane.

(b) Prove that I(0) = 0, and more generally

I(−n) = (−1)nf (n+1)(0) for all n ≥ 0.

[Hint: To prove the analytic continuation, as well as the formulas in the second

part, integrate by parts to show that I(s) = (−1)k

Γ(s+k)

∫∞
0
f (k)(x)xs+k−1 dx.]

4 Problems

1. This problem provides further estimates for ζ and ζ′ near Re(s) = 1.

(a) Use Proposition 2.5 and its corollary to prove

ζ(s) =
∑

1≤n<N

n−s − Ns−1

s− 1
+
∑
n≥N

δn(s)

for every integer N ≥ 2, whenever Re(s) > 0.

(b) Show that |ζ(1 + it)| = O(log |t|), as |t| → ∞ by using the previous result
with N =greatest integer in |t|.

4The Schwartz space on R is denoted by S and consists of all indefinitely differentiable
functions f , so that f and all its derivatives decay faster than any polynomials. In other
words, supx∈R |x|m|f(�)(x)| < ∞ for all integers m, � ≥ 0. This space appeared in the
study of the Fourier transform in Book I.
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(c) The second conclusion of Proposition 2.7 can be similarly refined.

(d) Show that if t 
= 0 and t is fixed, then the partial sums of the series∑∞
n=1 1/n1+it are bounded, but the series does not converge.

2.∗ Prove that for Re(s) > 0

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

where {x} is the fractional part of x.

3.∗ If Q(x) = {x} − 1/2, then we can write the expression in the previous problem
as

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

Q(x)

xs+1
dx.

Let us construct Qk(x) recursively so that∫ 1

0

Qk(x) dx = 0,
dQk+1

dx
= Qk(x), Q0(x) = Q(x) and Qk(x+ 1) = Qk(x).

Then we can write

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

(
dk

dxk
Qk(x)

)
x−s−1 dx ,

and a k-fold integration by parts gives the analytic continuation for ζ(s) when
Re(s) > −k.

4.∗ The functions Qk in the previous problem are related to the Bernoulli polyno-
mials Bk(x) by the formula

Qk(x) =
Bk+1(x)

(k + 1)!
for 0 ≤ x ≤ 1.

Also, if k is a positive integer, then

2ζ(2k) = (−1)k+1 (2π)2k

(2k)!
B2k,

where Bk = Bk(0) are the Bernoulli numbers. For the definition of Bk(x) and Bk

see Chapter 3 in Book I.



7 The Zeta Function and Prime
Number Theorem

Bernhard Riemann, whose extraordinary intuitive pow-
ers we have already mentioned, has especially reno-
vated our knowledge of the distribution of prime num-
bers, also one of the most mysterious questions in
mathematics. He has taught us to deduce results in
that line from considerations borrowed from the in-
tegral calculus: more precisely, from the study of a
certain quantity, a function of a variable s which may
assume not only real, but also imaginary values. He
proved some important properties of that function,
but enunciated two or three as important ones with-
out giving the proof. At the death of Riemann, a note
was found among his papers, saying “These properties
of ζ(s) (the function in question) are deduced from an
expression of it which, however, I did not succeed in
simplifying enough to publish it.”

We still have not the slightest idea of what the
expression could be. As to the properties he simply
enunciated, some thirty years elapsed before I was able
to prove all of them but one. The question concern-
ing that last one remains unsolved as yet, though, by
an immense labor pursued throughout this last half
century, some highly interesting discoveries in that di-
rection have been achieved. It seems more and more
probable, but still not at all certain, that the “Rie-
mann hypothesis” is true.

J. Hadamard, 1945

Euler found, through his product formula for the zeta function, a
deep connection between analytical methods and arithmetic properties
of numbers, in particular primes. An easy consequence of Euler’s for-
mula is that the sum of the reciprocals of all primes,

∑
p 1/p, diverges,

a result that quantifies the fact that there are infinitely many prime
numbers. The natural problem then becomes that of understanding
how these primes are distributed. With this in mind, we consider the
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following function:

π(x) = number of primes less than or equal to x.

The erratic growth of the function π(x) gives little hope of finding a
simple formula for it. Instead, one is led to study the asymptotic behavior
of π(x) as x becomes large. About 60 years after Euler’s discovery,
Legendre and Gauss observed after numerous calculations that it was
likely that

(1) π(x) ∼ x

log x
as x→ ∞.

(The asymptotic relation f(x) ∼ g(x) as x→ ∞ means that
f(x)/g(x) → 1 as x→ ∞.) Another 60 years later, shortly before Rie-
mann’s work, Tchebychev proved by elementary methods (and in partic-
ular, without the zeta function) the weaker result that

(2) π(x) ≈ x

log x
as x→ ∞.

Here, by definition, the symbol ≈ means that there are positive constants
A < B such that

A
x

log x
≤ π(x) ≤ B

x

log x

for all sufficiently large x.
In 1896, about 40 years after Tchebychev’s result, Hadamard and de

la Vallée Poussin gave a proof of the validity of the relation (1). Their
result is known as the prime number theorem. The original proofs of
this theorem, as well as the one we give below, use complex analysis.
We should remark that since then other proofs have been found, some
depending on complex analysis, and others more elementary in nature.

At the heart of the proof of the prime number theorem that we give
below lies the fact that ζ(s) does not vanish on the line Re(s) = 1. In
fact, it can be shown that these two propositions are equivalent.

1 Zeros of the zeta function

We have seen in Theorem 1.10, Chapter 8 in Book I, Euler’s identity,
which states that for Re(s) > 1 the zeta function can be expressed as an
infinite product

ζ(s) =
∏
p

1
1 − p−s

.
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For the sake of completeness we provide a proof of the above identity.
The key observation is that 1/(1 − p−s) can be written as a convergent
(geometric) power series

1 +
1
ps

+
1
p2s

+ · · · + 1
pMs

+ · · · ,

and taking formally the product of these series over all primes p, yields
the desired result. A precise argument goes as follows.

Suppose M and N are positive integers with M > N . Observe now
that, by the fundamental theorem of arithmetic,1 any positive integer
n ≤ N can be written uniquely as a product of primes, and that each
prime that occurs in the product must be less than or equal to N and
repeated less than M times. Therefore

N∑
n=1

1
ns

≤
∏
p≤N

(
1 +

1
ps

+
1
p2s

+ · · · + 1
pMs

)
≤
∏
p≤N

(
1

1 − p−s

)
≤
∏
p

(
1

1 − p−s

)
.

Letting N tend to infinity in the series now yields

∞∑
n=1

1
ns

≤
∏
p

(
1

1 − p−s

)
.

For the reverse inequality, we argue as follows. Again, by the fundamen-
tal theorem of arithmetic, we find that

∏
p≤N

(
1 +

1
ps

+
1
p2s

+ · · · + 1
pMs

)
≤

∞∑
n=1

1
ns
.

Letting M tend to infinity gives

∏
p≤N

(
1

1 − p−s

)
≤

∞∑
n=1

1
ns
.

1A proof of this elementary (but essential) fact is given in the first section of Chapter 8
in Book I.
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Hence ∏
p

(
1

1 − p−s

)
≤

∞∑
n=1

1
ns
,

and the proof of the product formula for ζ is complete.
From the product formula we see, by Proposition 3.1 in Chapter 5,

that ζ(s) does not vanish when Re(s) > 1.

To obtain further information about the location of the zeros of ζ, we
use the functional equation that provided the analytic continuation of ζ.
We may write the fundamental relation ξ(s) = ξ(1 − s) in the form

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s),

and therefore

ζ(s) = πs−1/2 Γ((1 − s)/2)
Γ(s/2)

ζ(1 − s).

Now observe that for Re(s) < 0 the following are true:

(i) ζ(1 − s) has no zeros because Re(1 − s) > 1.

(ii) Γ((1 − s)/2) is zero free.

(iii) 1/Γ(s/2) has zeros at s = −2,−4,−6, . . . .

Therefore, the only zeros of ζ in Re(s) < 0 are located at the negative
even integers −2,−4,−6, . . ..

This proves the following theorem.

Theorem 1.1 The only zeros of ζ outside the strip 0 ≤ Re(s) ≤ 1 are
at the negative even integers, −2,−4,−6, . . ..

The region that remains to be studied is called the critical strip,
0 ≤ Re(s) ≤ 1. A key fact in the proof of the prime number theorem is
that ζ has no zeros on the line Re(s) = 1. As a simple consequence of
this fact and the functional equation, it follows that ζ has no zeros on
the line Re(s) = 0.

In the seminal paper where Riemann introduced the analytic contin-
uation of the ζ function and proved its functional equation, he applied
these insights to the theory of prime numbers, and wrote down “ex-
plicit” formulas for determining the distribution of primes. While he did
not succeed in fully proving and exploiting his assertions, he did initiate
many important new ideas. His analysis led him to believe the truth of
what has since been called the Riemann hypothesis:
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The zeros of ζ(s) in the critical strip lie on the line
Re(s) = 1/2.

He said about this: “It would certainly be desirable to have a rigorous
demonstration of this proposition; nevertheless I have for the moment
set this aside, after several quick but unsuccessful attempts, because it
seemed unneeded for the immediate goal of my study.” Although much
of the theory and numerical results point to the validity of this hypothe-
sis, a proof or a counter-example remains to be discovered. The Riemann
hypothesis is today one of mathematics’ most famous unresolved prob-
lems.

In particular, it is for this reason that the zeros of ζ located outside the
critical strip are sometimes called the trivial zeros of the zeta function.
See also Exercise 5 for an argument proving that ζ has no zeros on the
real segment, 0 ≤ σ ≤ 1, where s = σ + it.

In the rest of this section we shall restrict ourselves to proving the
following theorem, together with related estimates on ζ, which we shall
use in the proof of the prime number theorem.

Theorem 1.2 The zeta function has no zeros on the line Re(s) = 1.

Of course, since we know that ζ has a pole at s = 1, there are no zeros
in a neighborhood of this point, but what we need is the deeper property
that

ζ(1 + it) �= 0 for all t ∈ R.

The next sequence of lemmas gathers the necessary ingredients for the
proof of Theorem 1.2.

Lemma 1.3 If Re(s) > 1, then

log ζ(s) =
∑
p,m

p−ms

m
=

∞∑
n=1

cnn
−s

for some cn ≥ 0.

Proof. Suppose first that s > 1. Taking the logarithm of the Euler
product formula, and using the power series expansion for the logarithm

log
(

1
1 − x

)
=

∞∑
m=1

xm

m
,
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which holds for 0 ≤ x < 1, we find that

log ζ(s) = log
∏
p

1
1 − p−s

=
∑

p

log
(

1
1 − p−s

)
=
∑
p,m

p−ms

m
.

Since the double sum converges absolutely, we need not specify the order
of summation. See the Note at the end of this chapter. The formula
then holds for all Re(s) > 1 by analytic continuation. Note that, by
Theorem 6.2 in Chapter 3, log ζ(s) is well defined in the simply connected
half-plane Re(s) > 1, since ζ has no zeros there. Finally, it is clear that
we have ∑

p,m

p−ms

m
=

∞∑
n=1

cnn
−s ,

where cn = 1/m if n = pm and cn = 0 otherwise.

The proof of the theorem we shall give depends on a simple trick that
is based on the following inequality.

Lemma 1.4 If θ ∈ R, then 3 + 4 cos θ + cos 2θ ≥ 0.

This follows at once from the simple observation

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2.

Corollary 1.5 If σ > 1 and t is real, then

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 0.

Proof. Let s = σ + it and note that

Re(n−s) = Re(e−(σ+it) log n) = e−σ log n cos(t logn) = n−σ cos(t logn).

Therefore,

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)|

= 3 log |ζ(σ)| + 4 log |ζ(σ + it)| + log |ζ(σ + 2it)|
= 3Re[log ζ(σ)] + 4Re[log ζ(σ + it)] + Re[log ζ(σ + 2it)]

=
∑

cnn
−σ(3 + 4 cos θn + cos 2θn) ,

where θn = t logn. The positivity now follows from Lemma 1.4, and the
fact that cn ≥ 0.
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We can now finish the proof of our theorem.

Proof of Theorem 1.2. Suppose on the contrary that ζ(1 + it0) = 0 for
some t0 �= 0. Since ζ is holomorphic at 1 + it0, it must vanish at least to
order 1 at this point, hence

|ζ(σ + it0)|4 ≤ C(σ − 1)4 as σ → 1,

for some constant C > 0. Also, we know that s = 1 is a simple pole for
ζ(s), so that

|ζ(σ)|3 ≤ C′(σ − 1)−3 as σ → 1,

for some constant C′ > 0. Finally, since ζ is holomorphic at the points
σ + 2it0, the quantity |ζ(σ + 2it0)| remains bounded as σ → 1. Putting
these facts together yields

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| → 0 as σ → 1 ,

which contradicts Corollary 1.5, since the logarithm of real numbers be-
tween 0 and 1 is negative. This concludes the proof that ζ is zero free
on the real line Re(s) = 1.

1.1 Estimates for 1/ζ(s)

The proof of the prime number theorem relies on detailed manipulations
of the zeta function near the line Re(s) = 1; the basic object involved is
the logarithmic derivative ζ′(s)/ζ(s). For this reason, besides the non-
vanishing of ζ on the line, we need to know about the growth of ζ′

and 1/ζ. The former was dealt with in Proposition 2.7 of Chapter 6; we
now treat the latter.

The proposition that follows is actually a quantitative version of The-
orem 1.2.

Proposition 1.6 For every ε > 0, we have 1/|ζ(s)| ≤ cε|t|ε when s =
σ + it, σ ≥ 1, and |t| ≥ 1.

Proof. From our previous observations, we clearly have that

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 1, whenever σ ≥ 1.

Using the estimate for ζ in Proposition 2.7 of Chapter 6, we find that

|ζ4(σ + it)| ≥ c|ζ−3(σ)| |t|−ε ≥ c′(σ − 1)3|t|−ε,
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for all σ ≥ 1 and |t| ≥ 1. Thus

(3) |ζ(σ + it)| ≥ c′(σ − 1)3/4|t|−ε/4, whenever σ ≥ 1 and |t| ≥ 1.

We now consider two separate cases, depending on whether the in-
equality σ − 1 ≥ A|t|−5ε holds, for some appropriate constant A (whose
value we choose later).

If this inequality does hold, then (3) immediately provides

|ζ(σ + it)| ≥ A′|t|−4ε,

and it suffices to replace 4ε by ε to conclude the proof of the desired
estimate, in this case.

If, however, σ − 1 < A|t|−5ε, then we first select σ′ > σ with σ′ − 1 =
A|t|−5ε. The triangle inequality then implies

|ζ(σ + it)| ≥ |ζ(σ′ + it)| − |ζ(σ′ + it) − ζ(σ + it)|,

and an application of the mean value theorem, together with the esti-
mates for the derivative of ζ obtained in the previous chapter, give

|ζ(σ′ + it) − ζ(σ + it)| ≤ c′′|σ′ − σ| |t|ε ≤ c′′|σ′ − 1| |t|ε.

These observations, together with an application of (3) where we set
σ = σ′, show that

|ζ(σ + it)| ≥ c′(σ′ − 1)3/4|t|−ε/4 − c′′(σ′ − 1)|t|ε.

Now choose A = (c′/(2c′′))4, and recall that σ′ − 1 = A|t|−5ε. This gives
precisely

c′(σ′ − 1)3/4|t|−ε/4 = 2c′′(σ′ − 1)|t|ε,

and therefore

|ζ(σ + it)| ≥ A′′|t|−4ε.

On replacing 4ε by ε, the desired inequality is established, and the proof
of the proposition is complete.

2 Reduction to the functions ψ and ψ1

In his study of primes, Tchebychev introduced an auxiliary function
whose behavior is to a large extent equivalent to the asymptotic distri-
bution of primes, but which is easier to manipulate than π(x). Tcheby-
chev’s ψ-function is defined by

ψ(x) =
∑

pm≤x

log p.
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The sum is taken over those integers of the form pm that are less than or
equal to x. Here p is a prime number and m is a positive integer. There
are two other formulations of ψ that we shall need. First, if we define

Λ(n) =
{

log p if n = pm for some prime p and some m ≥ 1,
0 otherwise,

then it is clear that

ψ(x) =
∑

1≤n≤x

Λ(n).

Also, it is immediate that

ψ(x) =
∑
p≤x

[
log x
log p

]
log p

where [u] denotes the greatest integer ≤ u, and the sum is taken over the
primes less than x. This formula follows from the fact that if pm ≤ x,
then m ≤ log x/ log p.

The fact that ψ(x) contains enough information about π(x) to prove
our theorem is given a precise meaning in the statement of the next
proposition. In particular, this reduces the prime number theorem to a
corresponding asymptotic statement about ψ.

Proposition 2.1 If ψ(x) ∼ x as x → ∞, then π(x) ∼ x/ logx as
x→ ∞.

Proof. The argument here is elementary. By definition, it suffices to
prove the following two inequalities:

(4) 1 ≤ lim inf
x→∞

π(x)
logx
x

and lim sup
x→∞

π(x)
logx
x

≤ 1.

To do so, first note that crude estimates give

ψ(x) =
∑
p≤x

[
log x
log p

]
log p ≤

∑
p≤x

log x
log p

log p = π(x) logx,

and dividing through by x yields

ψ(x)
x

≤ π(x) logx
x

.
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The asymptotic condition ψ(x) ∼ x implies the first inequality in (4).
The proof of the second inequality is a little trickier. Fix 0 < α < 1, and
note that

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x

log p ≥ (π(x) − π(xα)) log xα,

and therefore

ψ(x) + απ(xα) log x ≥ απ(x) logx.

Dividing by x, noting that π(xα) ≤ xα, α < 1, and ψ(x) ∼ x, gives

1 ≥ α lim sup
x→∞

π(x)
logx
x

.

Since α < 1 was arbitrary, the proof is complete.

Remark. The converse of the proposition is also true: if π(x) ∼
x/ logx then ψ(x) ∼ x. Since we shall not need this result, we leave the
proof to the interested reader.

In fact, it will be more convenient to work with a close cousin of the
ψ function. Define the function ψ1 by

ψ1(x) =
∫ x

1

ψ(u) du.

In the previous proposition we reduced the prime number theorem to
the asymptotics of ψ(x) as x tends to infinity. Next, we show that this
follows from the asymptotics of ψ1.

Proposition 2.2 If ψ1(x) ∼ x2/2 as x→ ∞, then ψ(x) ∼ x as x→ ∞,
and therefore π(x) ∼ x/ logx as x→ ∞.

Proof. By Proposition 2.1, it suffices to prove that ψ(x) ∼ x as
x→ ∞. This will follow quite easily from the fact that if α < 1 < β,
then

1
(1 − α)x

∫ x

αx

ψ(u) du ≤ ψ(x) ≤ 1
(β − 1)x

∫ βx

x

ψ(u) du.

The proof of this double inequality is immediate and relies simply on the
fact that ψ is increasing. As a consequence, we find, for example, that

ψ(x) ≤ 1
(β − 1)x

[ψ1(βx) − ψ1(x)],
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and therefore

ψ(x)
x

≤ 1
(β − 1)

[
ψ1(βx)
(βx)2

β2 − ψ1(x)
x2

]
.

In turn this implies

lim sup
x→∞

ψ(x)
x

≤ 1
β − 1

[
1
2
β2 − 1

2

]
=

1
2
(β + 1).

Since this result is true for all β > 1, we have proved that
lim supx→∞ ψ(x)/x ≤ 1. A similar argument with α < 1, then shows
that lim infx→∞ ψ(x)/x ≥ 1, and the proof of the proposition is com-
plete.

It is now time to relate ψ1 (and therefore also ψ) and ζ. We proved in
Lemma 1.3 that for Re(s) > 1

log ζ(s) =
∑
m,p

p−ms

m
.

Differentiating this expression gives

ζ′(s)
ζ(s)

= −
∑
m,p

(log p)p−ms = −
∞∑

n=1

Λ(n)
ns

.

We record this formula for Re(s) > 1 as

(5) −ζ
′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

.

The asymptotic behavior ψ1(x) ∼ x2/2 will be a consequence via (5)
of the relationship between ψ1 and ζ, which is expressed by the following
noteworthy integral formula.

Proposition 2.3 For all c > 1

(6) ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds.

To make the proof of this formula clear, we isolate the necessary con-
tour integrals in a lemma.



192 Chapter 7. THE ZETA FUNCTION AND PRIME NUMBER THEOREM

Lemma 2.4 If c > 0, then

1
2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0 if 0 < a ≤ 1,
1 − 1/a if 1 ≤ a.

Here, the integral is over the vertical line Re(s) = c.

Proof. First note that since |as| = ac, the integral converges. We
suppose first that 1 ≤ a, and write a = eβ with β = log a ≥ 0. Let

f(s) =
as

s(s+ 1)
=

esβ

s(s+ 1)
.

Then ress=0f = 1 and ress=−1f = −1/a. For T > 0, consider the path
Γ(T ) shown on Figure 1.

c

S(T )

0

C(T )

Γ(T )

Figure 1. The contour in the proof of Lemma 2.4 when a ≥ 1

The path Γ(T ) consists of the vertical segment S(T ) from c− iT to
c+ iT , and of the half-circle C(T ) centered at c of radius T , lying to the
left of the vertical segment. We equip Γ(T ) with the positive (counter-
clockwise) orientation, and note that we are dealing with a toy contour.
If we choose T so large that 0 and −1 are contained in the interior of
Γ(T ), then by the residue formula

1
2πi

∫
Γ(T )

f(s) ds = 1 − 1/a.
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Since ∫
Γ(T )

f(s) ds =
∫

S(T )

f(s) ds+
∫

C(T )

f(s) ds,

it suffices to prove that the integral over the half-circle goes to 0 as T
tends to infinity. Note that if s = σ + it ∈ C(T ), then for all large T we
have

|s(s+ 1)| ≥ (1/2)T 2,

and since σ ≤ c we also have the estimate |eβs| ≤ eβc. Therefore∣∣∣∣∫
C(T )

f(s) ds
∣∣∣∣ ≤ C

T 2
2πT → 0 as T → ∞,

and the case when a ≥ 1 is proved.
If 0 < a ≤ 1, consider an analogous contour but with the half-circle

lying to the right of the line Re(s) = c. Noting that there are no poles in
the interior of that contour, we can give an argument similar to the one
given above to show that the integral over the half-circle also goes to 0
as T tends to infinity.

We are now ready to prove Proposition 2.3. First, observe that

ψ(u) =
∞∑

n=1

Λ(n)fn(u),

where fn(u) = 1 if n ≤ u and fn(u) = 0 otherwise. Therefore,

ψ1(x) =
∫ x

0

ψ(u) du

=
∞∑

n=1

∫ x

0

Λ(n)fn(u) du

=
∑
n≤x

Λ(n)
∫ x

n

du,

and hence

ψ1(x) =
∑
n≤x

Λ(n)(x− n).



194 Chapter 7. THE ZETA FUNCTION AND PRIME NUMBER THEOREM

This fact, together with equation (5) and an application of Lemma 2.4
(with a = x/n), gives

1
2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds = x

∞∑
n=1

Λ(n)
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds

= x
∑
n≤x

Λ(n)
(
1 − n

x

)
= ψ1(x),

as was to be shown.

2.1 Proof of the asymptotics for ψ1

In this section, we will show that

ψ1(x) ∼ x2/2 as x→ ∞,

and as a consequence, we will have proved the prime number theorem.

The key ingredients in the argument are:

• the formula in Proposition 2.3 connecting ψ1 to ζ, namely

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds

for c > 1.

• the non-vanishing of the zeta function on Re(s) = 1,

ζ(1 + it) �= 0 for all t ∈ R,

and the estimates for ζ near that line given in Proposition 2.7 of
Chapter 6 together with Proposition 1.6 of this chapter.

Let us now discuss our strategy in more detail. In the integral above
for ψ1(x) we want to change the line of integration Re(s) = c with c > 1,
to Re(s) = 1. If we could achieve that, the size of the factor xs+1 in the
integrand would then be of order x2 (which is close to what we want)
instead of xc+1, c > 1, which is much too large. However, there would
still be two issues that must be dealt with. The first is the pole of ζ(s)
at s = 1; it turns out that when it is taken into account, its contribution
is exactly the main term x2/2 of the asymptotic of ψ1(x). Second, what
remains must be shown to be essentially smaller than this term, and so
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we must further refine the crude estimate of order x2 when integrating
on the line Re(s) = 1. We carry out our plan as follows.

Fix c > 1, say c = 2, and assume x is also fixed for the moment with
x ≥ 2. Let F (s) denote the integrand

F (s) =
xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
.

First we deform the vertical line from c− i∞ to c+ i∞ to the path γ(T )
shown in Figure 2. (The segments of γ(T ) on the line Re(s) = 1 consist
of T ≤ t <∞, and −∞ < t ≤ −T .) Here T ≥ 3, and T will be chosen
appropriately large later.

Re(s) = c

s = 1 s = 1 s = 1

γ5

γ1

γ2

γ4

γ(T ) γ(T, δ)

1 − i∞ 1 − i∞c− i∞

c+ i∞ 1 + i∞ 1 + i∞

γ3

Figure 2. Three stages: the line Re(s) = c, the contours γ(T ) and
γ(T, δ)

The usual and familiar arguments using Cauchy’s theorem allow us to
see that

(7)
1

2πi

∫ c+i∞

c−i∞
F (s) ds =

1
2πi

∫
γ(T )

F (s) ds.
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Indeed, we know on the basis of Proposition 2.7 in Chapter 6 and Proposi-
tion 1.6 that |ζ′(s)/ζ(s)| ≤ A|t|η for any fixed η > 0, whenever s = σ + it,
σ ≥ 1, and |t| ≥ 1. Thus |F (s)| ≤ A′|t|−2+η in the two (infinite) rectan-
gles bounded by the line (c− i∞, c+ i∞) and γ(T ). Since F is regular in
that region, and its decrease at infinity is rapid enough, the assertion (7)
is established.

Next, we pass from the contour γ(T ) to the contour γ(T, δ). (Again,
see Figure 2.) For fixed T , we choose δ > 0 small enough so that ζ has
no zeros in the box

{s = σ + it, 1 − δ ≤ σ ≤ 1, |t| ≤ T}.

Such a choice can be made since ζ does not vanish on the line σ = 1.
Now F (s) has a simple pole at s = 1. In fact, by Corollary 2.6 in Chap-

ter 6, we know that ζ(s) = 1/(s− 1) +H(s), where H(s) is regular near
s = 1. Hence −ζ′(s)/ζ(s) = 1/(s− 1) + h(s), where h(s) is holomorphic
near s = 1, and so the residue of F (s) at s = 1 equals x2/2. As a result

1
2πi

∫
γ(T )

F (s) ds =
x2

2
+

1
2πi

∫
γ(T,δ)

xs+1

s(s+ 1)
F (s) ds.

We now decompose the contour γ(T, δ) as γ1 + γ2 + γ3 + γ4 + γ5 and
estimate each of the integrals

∫
γj
F (s) ds, j = 1, 2, 3, 4, 5, with the γj as

in Figure 2.
First we contend that there exists T so large that∣∣∣∣∫

γ1

F (s) ds
∣∣∣∣ ≤ ε

2
x2 and

∣∣∣∣∫
γ5

F (s) ds
∣∣∣∣ ≤ ε

2
x2.

To see this, we first note that for s ∈ γ1 one has

|x1+s| = x1+σ = x2.

Then, by Proposition 1.6 we have, for example, that |ζ′(s)/ζ(s)| ≤ A|t|1/2,
so ∣∣∣∣∫

γ1

F (s) ds
∣∣∣∣ ≤ Cx2

∫ ∞

T

|t|1/2

t2
dt.

Since the integral converges, we can make the right-hand side ≤ εx2/2
upon taking T sufficiently large. The argument for the integral over γ5

is the same.
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Having now fixed T , we choose δ appropriately small. On γ3, note
that

|x1+s| = x1+1−δ = x2−δ ,

from which we conclude that there exists a constant CT (dependent on
T ) such that ∣∣∣∣∫

γ3

F (s) ds
∣∣∣∣ ≤ CTx

2−δ .

Finally, on the small horizontal segment γ2 (and similarly on γ4), we can
estimate the integral as follows:∣∣∣∣∫

γ2

F (s) ds
∣∣∣∣ ≤ C′

T

∫ 1

1−δ

x1+σ dσ ≤ C′
T

x2

log x
.

We conclude that there exist constants CT and C′
T (possibly different

from the ones above) such that∣∣∣∣ψ1(x) −
x2

2

∣∣∣∣ ≤ εx2 + CTx
2−δ + C′

T

x2

log x
.

Dividing through by x2/2, we see that∣∣∣∣2ψ1(x)
x2

− 1
∣∣∣∣ ≤ 2ε+ 2CTx

−δ + 2C′
T

1
log x

,

and therefore, for all large x we have∣∣∣∣2ψ1(x)
x2

− 1
∣∣∣∣ ≤ 4ε.

This concludes the proof that

ψ1(x) ∼ x2/2 as x→ ∞ ,

and thus, we have also completed the proof of the prime number theorem.

Note on interchanging double sums

We prove the following facts about the interchange of infinite sums: if {ak�}1≤k,�<∞
is a sequence of complex numbers indexed by N × N, such that

(8)

∞∑
k=1

( ∞∑
�=1

|ak�|
)
<∞,
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then:

(i) The double sum A =
∑∞

k=1

(∑∞
�=1 ak�

)
summed in this order converges, and

we may in fact also interchange the order of summation, so that

A =

∞∑
k=1

∞∑
�=1

ak� =

∞∑
�=1

∞∑
k=1

ak�.

(ii) Given ε > 0, there is a positive integer N so that for all K,L > N we have∣∣∣A−∑K
k=1

∑L
�=1 ak�

∣∣∣ < ε.

(iii) If m �→ (k(m), �(m)) is a bijection from N to N × N, and if we write cm =
ak(m)�(m), then A =

∑∞
k=1 ck.

Statement (iii) says that any rearrangement of the sequence {ak�} can be summed
without changing the limit. This is analogous to the case of absolutely convergent
series, which can be summed in any desired order.

The condition (8) says that each sum
∑

� ak� converges absolutely, and moreover
this convergence is “uniform” in k. An analogous situation arises for sequences of
functions, where an important question is whether or not the interchange of limits

lim
x→x0

lim
n→∞

fn(x)
?
= lim

n→∞
lim

x→x0
fn(x)

holds. It is a well-known fact that if the fn’s are continuous, and their convergence
is uniform, then the above identity is true since the limit function is itself continu-
ous. To take advantage of this fact, define bk =

∑∞
�=1 |ak�| and let S = {x0, x1, . . .}

be a countable set of points with limn→∞ xn = x0. Also, define functions on S as
follows:

fk(x0) =
∑∞

�=1 ak� for k = 1, 2, . . .

fk(xn) =
∑n

�=1 ak� for k = 1, 2, . . . and n = 1, 2, . . .

g(x) =
∑∞

k=1 fk(x) for x ∈ S.

By assumption (8), each fk is continuous at x0. Moreover |fk(x)| ≤ bk and∑
bk <∞, so the series defining the function g is uniformly convergent on S,

and therefore g is also continuous at x0. As a consequence we find (i), since

∞∑
k=1

∞∑
�=1

ak� = g(x0) = lim
n→∞

g(xn) = lim
n→∞

∞∑
k=1

n∑
�=1

ak�

= lim
n→∞

n∑
�=1

∞∑
k=1

ak� =
∞∑

�=1

∞∑
k=1

ak�.

For the second statement, first observe that∣∣∣∣∣A−
K∑

k=1

L∑
�=1

ak�

∣∣∣∣∣ ≤ ∑
k≤K

∑
�>L

|ak�| +
∑
k>K

∞∑
�=1

|ak�|.
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To estimate the second term, we use the fact that
∑
bk converges, which implies∑

k>K

∑∞
�=1 |ak�| < ε/2 whenever K > K0, for some K0. For the first term above,

note that
∑

k≤K

∑
�>L |ak�| ≤

∑∞
k=1

∑
�>L |ak�|. But the argument above guar-

antees that we can interchange these last two sums; also
∑∞

�=1

∑∞
k=1 |ak�| <∞,

so that for all L > L0 we have
∑

�>L

∑∞
k=1 |ak�| < ε/2. Taking N > max(L0, K0)

completes the proof of (ii).
The proof of (iii) is a direct consequence of (ii). Indeed, given any rectangle

R(K,L) = {(k, �) ∈ N × N : 1 ≤ k ≤ K and 1 ≤ � ≤ L},

there exists M such that the image of [1,M ] under the map m �→ (k(m), �(m))
contains R(K,L).

When U denotes any open set in R2 that contains the origin, we define for R > 0
its dilate U(R) = {y ∈ R2 : y = Rx for some x ∈ U}, and we can apply (ii) to see
that

A = lim
R→∞

∑
(k,�)∈U(R)

ak�.

In other words, under condition (8) the double sum
∑

k� ak� can be evaluated by
summing over discs, squares, rectangles, ellipses, etc.

Finally, we leave the reader with the instructive task of finding a sequence of
complex numbers {ak�} such that∑

k

∑
�

ak� 
=
∑

�

∑
k

ak�.

[Hint: Consider {ak�} as the entries of an infinite matrix with 0 above the diagonal,
−1 on the diagonal, and ak� = 2�−k if k > �.]

3 Exercises

1. Suppose that {an}∞n=1 is a sequence of real numbers such that the partial sums

An = a1 + · · · + an

are bounded. Prove that the Dirichlet series

∞∑
n=1

an

ns

converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

[Hint: Use summation by parts to compare the original (non-absolutely convergent)
series to the (absolutely convergent) series

∑
An(n−s − (n+ 1)−s). An estimate

for the term in parentheses is provided by the mean value theorem. To prove
that the series is analytic, show that the partial sums converge uniformly on every
compact subset of the half-plane Re(s) > 0.]
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2. The following links the multiplication of Dirichlet series with the divisibility
properties of their coefficients.

(a) Show that if {am} and {bk} are two bounded sequences of complex numbers,
then ( ∞∑

m=1

am

ms

)( ∞∑
k=1

bk
ks

)
=

∞∑
n=1

cn
ns

where cn =
∑

mk=n ambk.

The above series converge absolutely when Re(s) > 1.

(b) Prove as a consequence that one has

(ζ(s))2 =
∞∑

n=1

d(n)

ns
and ζ(s)ζ(s− a) =

∞∑
n=1

σa(n)

ns

for Re(s) > 1 and Re(s− a) > 1, respectively. Here d(n) equals the number
of divisors of n, and σa(n) is the sum of the ath powers of divisors of n. In
particular, one has σ0(n) = d(n).

3. In line with the previous exercise, we consider the Dirichlet series for 1/ζ.

(a) Prove that for Re(s) > 1

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
,

where µ(n) is the Möbius function defined by

µ(n) =


1 if n = 1 ,

(−1)k if n = p1 · · · pk, and the pj are distinct primes ,
0 otherwise .

Note that µ(nm) = µ(n)µ(m) whenever n and m are relatively prime. [Hint:
Use the Euler product formula for ζ(s).]

(b) Show that ∑
k|n

µ(k) =

{
1 if n = 1,
0 otherwise.

4. Suppose {an}∞n=1 is a sequence of complex numbers such that an = am if n ≡ m
mod q for some positive integer q. Define the Dirichlet L-series associated to
{an} by

L(s) =
∞∑

n=1

an

ns
for Re(s) > 1.
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Also, with a0 = aq, let

Q(x) =

q−1∑
m=0

aq−me
mx.

Show, as in Exercises 15 and 16 of the previous chapter, that

L(s) =
1

Γ(s)

∫ ∞

0

Q(x)xs−1

eqx − 1
dx, for Re(s) > 1.

Prove as a result that L(s) is continuable into the complex plane, with the only
possible singularity a pole at s = 1. In fact, L(s) is regular at s = 1 if and only if∑q−1

m=0 am = 0. Note the connection with the Dirichlet L(s, χ) series, taken up in
Book I, Chapter 8, and that as a consequence, L(s, χ) is regular at s = 1 if and
only if χ is a non-trivial character.

5. Consider the following function

ζ̃(s) = 1 − 1

2s
+

1

3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(a) Prove that the series defining ζ̃(s) converges for Re(s) > 0 and defines a
holomorphic function in that half-plane.

(b) Show that for s > 1 one has ζ̃(s) = (1 − 21−s)ζ(s).

(c) Conclude, since ζ̃ is given as an alternating series, that ζ has no zeros on
the segment 0 < σ < 1. Extend this last assertion to σ = 0 by using the
functional equation.

6. Show that for every c > 0

lim
N→∞

1

2πi

∫ c+iN

c−iN

as ds

s
=


1 if a > 1,
1/2 if a = 1,
0 if 0 ≤ a < 1.

The integral is taken over the vertical segment from c− iN to c+ iN .

7. Show that the function

ξ(s) = π−s/2Γ(s/2)ζ(s)

is real when s is real, or when Re(s) = 1/2.

8. The function ζ has infinitely many zeros in the critical strip. This can be seen
as follows.
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(a) Let

F (s) = ξ(1/2 + s), where ξ(s) = π−s/2Γ(s/2)ζ(s).

Show that F (s) is an even function of s, and as a result, there exists G so
that G(s2) = F (s).

(b) Show that the function (s− 1)ζ(s) is an entire function of growth order 1,
that is

|(s − 1)ζ(s)| ≤ Aεe
aε|s|1+ε

.

As a consequence G(s) is of growth order 1/2.

(c) Deduce from the above that ζ has infinitely many zeros in the critical strip.

[Hint: To prove (a) and (b) use the functional equation for ζ(s). For (c), use a
result of Hadamard, which states that an entire function with fractional order has
infinitely many zeros (Exercise 14 in Chapter 5).]

9. Refine the estimates in Proposition 2.7 in Chapter 6 and Proposition 1.6 to
show that

(a) |ζ(1 + it)| ≤ A log |t|,
(b) |ζ′(1 + it)| ≤ A(log |t|)2,
(c) 1/|ζ(1 + it)| ≤ A(log |t|)a,

when |t| ≥ 2 (with a = 7).

10. In the theory of primes, a better approximation to π(x) (instead of x/ log x)
turns out to be Li(x) defined by

Li(x) =

∫ x

2

dt

log t
.

(a) Prove that

Li(x) =
x

log x
+O

(
x

(log x)2

)
as x→ ∞,

and that as a consequence

π(x) ∼ Li(x) as x→ ∞.

[Hint: Integrate by parts in the definition of Li(x) and observe that it suffices
to prove ∫ x

2

dt

(log t)2
= O

(
x

(log x)2

)
.

To see this, split the integral from 2 to
√
x and from

√
x to x.]
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(b) Refine the previous analysis by showing that for every integer N > 0 one
has the following asymptotic expansion

Li(x) =
x

log x
+

x

(log x)2
+ 2

x

(log x)3
· · · + (N − 1)!

x

(log x)N
+O

(
x

(log x)N+1

)
as x→ ∞.

11. Let

ϕ(x) =
∑
p≤x

log p

where the sum is taken over all primes ≤ x. Prove that the following are equivalent
as x→ ∞:

(i) ϕ(x) ∼ x,

(ii) π(x) ∼ x/ log x,

(iii) ψ(x) ∼ x,

(iv) ψ1(x) ∼ x2/2.

12. If pn denotes the nth prime, the prime number theorem implies that
pn ∼ n log n as n→ ∞.

(a) Show that π(x) ∼ x/ log x implies that

log π(x) + log log x ∼ log x.

(b) As a consequence, prove that log π(x) ∼ log x, and take x = pn to conclude
the proof.

4 Problems

1. Let F (s) =
∑∞

n=1 an/n
s, where |an| ≤M for all n.

(a) Then

lim
T→∞

1

2T

∫ T

−T

|F (σ + it)|2 dt =
∞∑

n=1

|an|2
n2σ

if σ > 1.

How is this reminiscent of the Parseval-Plancherel theorem? See e.g. Chap-
ter 3 in Book I.
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(b) Show as a consequence the uniqueness of Dirichlet series: If F (s)=
∑∞

n=1ann
−s,

where the coefficients are assumed to satisfy |an| ≤ cnk for some k, and
F (s) ≡ 0, then an = 0 for all n.

Hint: For part (a) use the fact that

1

2T

∫ T

−T

(nm)−σn−itmit dt→
{
n−2σ if n = m,
0 if n 
= m.

2.∗ One of the “explicit formulas” in the theory of primes is as follows: if ψ1 is the
integrated Tchebychev function considered in Section 2, then

ψ1(x) =
x2

2
−
∑

ρ

xρ

ρ(ρ+ 1)
−E(x)

where the sum is taken over all zeros ρ of the zeta function in the critical strip.
The error term is given by E(x) = c1x+ c0 +

∑∞
k=1 x

1−2k/(2k(2k − 1)), where
c1 = ζ′(0)/ζ(0) and c0 = ζ′(−1)/ζ(−1). Note that

∑
ρ 1/|ρ|1+ε <∞ for every

ε > 0, because (1 − s)ζ(s) has order of growth 1. (See Exercise 8.) Also, obvi-
ously E(x) = O(x) as x→ ∞.

3.∗ Using the previous problem one can show that

π(x) − Li(x) = O(xα+ε) as x→ ∞

for every ε > 0, where α is fixed and 1/2 ≤ α < 1 if and only if ζ(s) has no zeros in
the strip α < Re(s) < 1. The case α = 1/2 corresponds to the Riemann hypothesis.

4.∗ One can combine ideas from the prime number theorem with the proof of
Dirichlet’s theorem about primes in arithmetic progression (given in Book I) to
prove the following. Let q and � be relatively prime integers. We consider the
primes belonging to the arithmetic progression {qk + �}∞k=1, and let πq,�(x) denote
the number of such primes ≤ x. Then one has

πq,�(x) ∼ x

ϕ(q) log x
as x→ ∞ ,

where ϕ(q) denotes the number of positive integers less than q and relatively prime
to q.



8 Conformal Mappings

The results I found for polygons can be extended un-
der very general assumptions. I have undertaken this
research because it is a step towards a deeper un-
derstanding of the mapping problem, for which not
much has happened since Riemann’s inaugural disser-
tation; this, even though the theory of mappings, with
its close connection with the fundamental theorems of
Riemann’s function theory, deserves in the highest de-
gree to be developed further.

E. B. Christoffel, 1870

The problems and ideas we present in this chapter are more geomet-
ric in nature than the ones we have seen so far. In fact, here we will
be primarily interested in mapping properties of holomorphic functions.
In particular, most of our results will be “global,” as opposed to the
more “local” analytical results proved in the first three chapters. The
motivation behind much of our presentation lies in the following simple
question:

Given two open sets U and V in C, does there exist a holo-
morphic bijection between them?

By a holomorphic bijection we simply mean a function that is both
holomorphic and bijective. (It will turn out that the inverse map is then
automatically holomorphic.) A solution to this problem would permit
a transfer of questions about analytic functions from one open set with
little geometric structure to another with possibly more useful properties.
The prime example consists in taking V = D the unit disc, where many
ideas have been developed to study analytic functions.1 In fact, since
the disc seems to be the most fruitful choice for V we are led to a variant
of the above question:

Given an open subset Ω of C, what conditions on Ω guarantee
that there exists a holomorphic bijection from Ω to D?

1For the corresponding problem when V = C, the solution is trivial: only U = C is
possible. See Exercise 14 in Chapter 3.
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In some instances when a bijection exists it can be given by explicit
formulas, and we turn to this aspect of the theory first. For example, the
upper half-plane can be mapped by a holomorphic bijection to the disc,
and this is given by a fractional linear transformation. From there, one
can construct many other examples, by composing simple maps already
encountered earlier, such as rational functions, trigonometric functions,
logarithms, etc. As an application, we discuss the consequence of these
constructions to the solution of the Dirichlet problem for the Laplacian
in some particular domains.

Next, we pass from the specific examples to prove the first general
result of the chapter, namely the Schwarz lemma, with an immediate
application to the determination of all holomorphic bijections (“auto-
morphisms” of the disc to itself). These are again given by fractional
linear transformations.

Then comes the heart of the matter: the Riemann mapping theorem,
which states that Ω can be mapped to the unit disc whenever it is simply
connected and not all of C. This is a remarkable theorem, since little
is assumed about Ω, not even regularity of its boundary ∂Ω. (After
all, the boundary of the disc is smooth.) In particular, the interiors of
triangles, squares, and in fact any polygon can be mapped via a bijective
holomorphic function to the disc. A precise description of the mapping
in the case of polygons, called the Schwarz-Christoffel formula, will be
taken up in the last section of the chapter. It is interesting to note that
the mapping functions for rectangles are given by “elliptic integrals,” and
these lead to doubly-periodic functions. The latter are the subject of the
next chapter.

1 Conformal equivalence and examples

We fix some terminology that we shall use in the rest of this chapter.
A bijective holomorphic function f : U → V is called a conformal map
or biholomorphism. Given such a mapping f , we say that U and V
are conformally equivalent or simply biholomorphic. An important
fact is that the inverse of f is then automatically holomorphic.

Proposition 1.1 If f : U → V is holomorphic and injective, then
f ′(z) �= 0 for all z ∈ U . In particular, the inverse of f defined on its
range is holomorphic, and thus the inverse of a conformal map is also
holomorphic.
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Proof. We argue by contradiction, and suppose that f ′(z0) = 0 for
some z0 ∈ U . Then

f(z) − f(z0) = a(z − z0)k +G(z) for all z near z0,

with a �= 0, k ≥ 2 and G vanishing to order k + 1 at z0. For sufficiently
small w, we write

f(z)− f(z0) − w = F (z) +G(z), where F (z) = a(z − z0)k − w.

Since |G(z)| < |F (z)| on a small circle centered at z0, and F has at
least two zeros inside that circle, Rouché’s theorem implies that f(z)−
f(z0) − w has at least two zeros there. Since f ′(z) �= 0 for all z �= z0 but
sufficiently close to z0 it follows that the roots of f(z)− f(z0) − w are
distinct, hence f is not injective, a contradiction.

Now let g = f−1 denote the inverse of f on its range, which we can
assume is V . Suppose w0 ∈ V and w is close to w0. Write w = f(z) and
w0 = f(z0). If w �= w0, we have

g(w) − g(w0)
w − w0

=
1

w−w0
g(w)−g(w0)

=
1

f(z)−f(z0)
z−z0

.

Since f ′(z0) �= 0, we may let z → z0 and conclude that g is holomorphic
at w0 with g′(w0) = 1/f ′(g(w0)).

From this proposition we conclude that two open sets U and V are
conformally equivalent if and only if there exist holomorphic functions
f : U → V and g : V → U such that g(f(z)) = z and f(g(w)) = w for all
z ∈ U and w ∈ V .

We point out that the terminology adopted here is not universal. Some
authors call a holomorphic map f : U → V conformal if f ′(z) �= 0 for all
z ∈ U . This definition is clearly less restrictive than ours; for example,
f(z) = z2 on the punctured disc C − {0} satisfies f ′(z) �= 0, but is not
injective. However, the condition f ′(z) �= 0 is tantamount to f being a
local bijection (Exercise 1). There is a geometric consequence of the con-
dition f ′(z) �= 0 and it is at the root of this discrepency of terminology in
the definitions. A holomorphic map that satisfies this condition preserves
angles. Loosely speaking, if two curves γ and η intersect at z0, and α is
the oriented angle between the tangent vectors to these curves, then the
image curves f ◦ γ and f ◦ η intersect at f(z0), and their tangent vectors
form the same angle α. Problem 2 develops this idea.

We begin our study of conformal mappings by looking at a number
of specific examples. The first gives the conformal equivalence between
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the unit disc and the upper half-plane, which plays an important role in
many problems.

1.1 The disc and upper half-plane

The upper half-plane, which we denote by H, consists of those complex
numbers with positive imaginary part; that is,

H = {z ∈ C : Im(z) > 0}.

A remarkable fact, which at first seems surprising, is that the unbounded
set H is conformally equivalent to the unit disc. Moreover, an explicit
formula giving this equivalence exists. Indeed, let

F (z) =
i− z

i+ z
and G(w) = i

1 − w

1 + w
.

Theorem 1.2 The map F : H → D is a conformal map with inverse
G : D → H.

Proof. First we observe that both maps are holomorphic in their
respective domains. Then we note that any point in the upper half-
plane is closer to i than to −i, so |F (z)| < 1 and F maps H into D. To
prove that G maps into the upper half-plane, we must compute Im(G(w))
for w ∈ D. To this end we let w = u+ iv, and note that

Im(G(w)) = Re
(

1 − u− iv

1 + u+ iv

)
= Re

(
(1 − u− iv)(1 + u− iv)

(1 + u)2 + v2

)
=

1 − u2 − v2

(1 + u)2 + v2
> 0

since |w| < 1. Therefore G maps the unit disc to the upper half-plane.
Finally,

F (G(w)) =
i− i1−w

1+w

i+ i1−w
1+w

=
1 + w − 1 + w

1 + w + 1 − w
= w,

and similarly G(F (z)) = z. This proves the theorem.

An interesting aspect of these functions is their behavior on the bound-
aries of our open sets.2 Observe that F is holomorphic everywhere on C

2The boundary behavior of conformal maps is a recurrent theme that plays an impor-
tant role in this chapter.
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except at z = −i, and in particular it is continuous everywhere on the
boundary of H, namely the real line. If we take z = x real, then the
distance from x to i is the same as the distance from x to −i, there-
fore |F (x)| = 1. Thus F maps R onto the boundary of D. We get more
information by writing

F (x) =
i− x

i+ x
=

1 − x2

1 + x2
+ i

2x
1 + x2

,

and parametrizing the real line by x = tan t with t ∈ (−π/2, π/2). Since

sin 2a =
2 tana

1 + tan2 a
and cos 2a =

1 − tan2 a

1 + tan2 a
,

we have F (x) = cos 2t+ i sin 2t = ei2t. Hence the image of the real line
is the arc consisting of the circle omitting the point −1. Moreover, as x
travels from −∞ to ∞, F (x) travels along that arc starting from −1 and
first going through that part of the circle that lies in the lower half-plane.

The point −1 on the circle corresponds to the “point at infinity” of
the upper half-plane.

Remark. Mappings of the form

z 	→ az + b

cz + d
,

where a, b, c, and d are complex numbers, and where the denominator is
assumed not to be a multiple of the numerator, are usually referred to
as fractional linear transformations. Other instances occur as the
automorphisms of the disc and of the upper half-plane in Theorems 2.1
and 2.4.

1.2 Further examples

We gather here several illustrations of conformal mappings. In certain
cases we discuss the behavior of the map on the boundary of the relevant
domain. Some of the mappings are pictured in Figure 1.

Example 1. Translations and dilations provide the first simple examples.
Indeed, if h ∈ C, the translation z 	→ z + h is a conformal map from C

to itself whose inverse is w 	→ w − h. If h is real, then this translation is
also a conformal map from the upper half-plane to itself.

For any non-zero complex number c, the map f : z 	→ cz is a conformal
map from the complex plane to itself, whose inverse is simply g : w 	→
c−1w. If c has modulus 1, so that c = eiϕ for some real ϕ, then f is
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a rotation by ϕ. If c > 0 then f corresponds to a dilation. Finally, if
c < 0 the map f consists of a dilation by |c| followed by a rotation of π.

Example 2. If n is a positive integer, then the map z 	→ zn is conformal
from the sector S = {z ∈ C : 0 < arg(z) < π/n} to the upper half-plane.
The inverse of this map is simply w 	→ w1/n, defined in terms of the
principal branch of the logarithm.

More generally, if 0 < α < 2 the map f(z) = zα takes the upper half-
plane to the sector S = {w ∈ C : 0 < arg(w) < απ}. Indeed, if we choose
the branch of the logarithm obtained by deleting the positive real axis,
and z = reiθ with r > 0 and 0 < θ < π, then

f(z) = zα = |z|αeiαθ.

Therefore f maps H into S. Moreover, a simple verification shows that
the inverse of f is given by g(w) = w1/α, where the branch of the loga-
rithm is chosen so that 0 < argw < απ.

By composing the map just discussed with the translations and rota-
tions in the previous example, we may map the upper half-plane confor-
mally to any (infinite) sector in C.

Let us note the boundary behavior of f . If x travels from −∞ to 0 on
the real line, then f(x) travels from ∞eiαπ to 0 on the half-line deter-
mined by arg z = απ. As x goes from 0 to ∞ on the real line, the image
f(x) goes from 0 to ∞ on the real line as well.

Example 3. The map f(z) = (1 + z)/(1− z) takes the upper half-
disc {z = x+ iy : |z| < 1 and y > 0} conformally to the first quadrant
{w = u+ iv : u > 0 and v > 0}. Indeed, if z = x+ iy we have

f(z) =
1 − (x2 + y2)
(1 − x)2 + y2

+ i
2y

(1 − x)2 + y2
,

so f maps the half-disc in the upper half-plane into the first quadrant.
The inverse map, given by g(w) = (w − 1)/(w + 1), is clearly holomor-
phic in the first quadrant. Moreover, |w + 1| > |w − 1| for all w in the
first quadrant because the distance from w to −1 is greater than the
distance from w to 1; thus g maps into the unit disc. Finally, an easy
calculation shows that the imaginary part of g(w) is positive whenever w
is in the first quadrant. So g transforms the first quadrant into the
desired half-disc and we conclude that f is conformal because g is the
inverse of f .

To examine the action of f on the boundary, note that if z = eiθ be-
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longs to the upper half-circle, then

f(z) =
1 + eiθ

1 − eiθ
=
e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
=

i

tan(θ/2)
.

As θ travels from 0 to π we see that f(eiθ) travels along the imaginary
axis from infinity to 0. Moreover, if z = x is real, then

f(z) =
1 + x

1 − x

is also real; and one sees from this, that f is actually a bijection from
(−1, 1) to the positive real axis, with f(x) increasing from 0 to infinity
as x travels from −1 to 1. Note also that f(0) = 1.

Example 4. The map z 	→ log z, defined as the branch of the logarithm
obtained by deleting the negative imaginary axis, takes the upper half-
plane to the strip {w = u+ iv : u ∈ R, 0 < v < π}. This is immediate
from the fact that if z = reiθ with −π/2 < θ < 3π/2, then by definition,

log z = log r + iθ.

The inverse map is then w 	→ ew.
As x travels from −∞ to 0, the point f(x) travels from ∞ + iπ to

−∞ + iπ on the line {x+ iπ : −∞ < x <∞}. When x travels from 0
to ∞ on the real line, its image f(x) then goes from −∞ to ∞ along the
reals.

Example 5. With the previous example in mind, we see that
z 	→ log z also defines a conformal map from the half-disc {z = x+ iy :
|z| < 1, y > 0} to the half-strip {w = u+ iv : u < 0, 0 < v < π}. As x
travels from 0 to 1 on the real line, then logx goes from −∞ to 0.
When x goes from 1 to −1 on the half-circle in the upper half-plane,
then the point log x travels from 0 to πi on the vertical segment of the
strip. Finally, as x goes from −1 to 0, the point log x goes from πi to
−∞ + iπ on the top half-line of the strip.

Example 6. The map f(z) = eiz takes the half-strip {z = x+ iy :
−π/2 < x < π/2, y > 0} conformally to the half-disc {w = u+ iv :
|w| < 1, u > 0}. This is immediate from the fact that if z = x+ iy,
then

eiz = e−yeix.
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If x goes from π/2 + i∞ to π/2, then f(x) goes from 0 to i, and as x
goes from π/2 to −π/2, then f(x) travels from i to −i on the half-circle.
Finally, as x goes from −π/2 to −π/2 + i∞, we see that f(x) travels
from −i back to 0.

The mapping f is closely related to the inverse of the map in Exam-
ple 5.

Example 7. The function f(z) = −1
2 (z + 1/z) is a conformal map from

the half-disc {z = x+ iy : |z| < 1, y > 0} to the upper half-plane (Exer-
cise 5).

The boundary behavior of f is as follows. If x travels from 0 to 1, then
f(x) goes from ∞ to 1 on the real axis. If z = eiθ, then f(z) = cos θ and
as x travels from 1 to −1 along the unit half-circle in the upper half-
plane, the f(x) goes from 1 to −1 on the real segment. Finally, when x
goes from −1 to 0, f(x) goes from −1 to −∞ along the real axis.

Example 8. The map f(z) = sin z takes the upper half-plane confor-
mally onto the half-strip {w = x+ iy : −π/2 < x < π/2 y > 0}. To see
this, note that if ζ = eiz, then

sin z =
eiz − e−iz

2i
=

−1
2

(
iζ +

1
iζ

)
,

and therefore f is obtained first by applying the map in Example 6, then
multiplying by i (that is, rotating by π/2), and finally applying the map
in Example 7.

As x travels from −π/2 + i∞ to −π/2, the point f(x) goes from −∞
to −1. When x is real, between −π/2 and π/2, then f(x) is also real
between −1 and 1. Finally, if x goes from π/2 to π/2 + i∞, then f(x)
travels from 1 to ∞ on the real axis.

1.3 The Dirichlet problem in a strip

The Dirichlet problem in the open set Ω consists of solving

(1)
{

�u = 0 in Ω,
u = f on ∂Ω,

where � denotes the Laplacian ∂2/∂x2 + ∂2/∂y2, and f is a given func-
tion on the boundary of Ω. In other words, we wish to find a harmonic
function in Ω with prescribed boundary values f . This problem was al-
ready considered in Book I in the cases where Ω is the unit disc or the
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f(z) = zα

f(z) = 1+z
1−z

f(z) = log z

f(z) = sin z

−π
2

0

0

iπ

0

0 1

0

0 1

0

0

iπ

π
2

1

i

0

0

f(z) = log z

f1(z) = eiz f2(z) = iz f3(z) = −1
2

(
z + 1

z

)

Figure 1. Explicit conformal maps

upper half-plane, where it arose in the solution of the steady-state heat
equation. In these specific examples, explicit solutions were obtained in
terms of convolutions with the Poisson kernels.

Our goal here is to connect the Dirichlet problem with the conformal
maps discussed so far. We begin by providing a formula for a solution to
the problem (1) in the special case where Ω is a strip. In fact, this exam-
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ple was studied in Problem 3 of Chapter 5, Book I, where the problem
was solved using the Fourier transform. Here, we recover this solution
using only conformal mappings and the known solution in the disc.

The first important fact that we use is that the composition of a har-
monic function with a holomorphic function is still harmonic.

Lemma 1.3 Let V and U be open sets in C and F : V → U a holo-
morphic function. If u : U → C is a harmonic function, then u ◦ F is
harmonic on V .

Proof. The thrust of the lemma is purely local, so we may assume
that U is an open disc. We let G be a holomorphic function in U whose
real part is u (such a G exists by Exercise 12 in Chapter 2, and is deter-
mined up to an additive constant). Let H = G ◦ F and note that u ◦ F
is the real part of H. Hence u ◦ F is harmonic because H is holomorphic.

For an alternate (computational) proof of this lemma, see Exercise 6.

With this result in hand, we may now consider the problem (1) when
Ω consists of the horizontal strip

Ω = {x+ iy : x ∈ R, 0 < y < 1},

whose boundary is the union of the two horizontal lines R and i+ R. We
express the boundary data as two functions f0 and f1 defined on R, and
ask for a solution u(x, y) in Ω of �u = 0 that satisfies

u(x, 0) = f0(x) and u(x, 1) = f1(x).

We shall assume that f0 and f1 are continuous and vanish at infinity,
that is, that lim|x|→∞ fj(x) = 0 for j = 0, 1.

The method we shall follow consists of relocating the problem from
the strip to the unit disc via a conformal map. In the disc the solution
ũ is then expressed in terms of a convolution with the Poisson kernel.
Finally, ũ is moved back to the strip using the inverse of the previous
conformal map, thereby giving our final answer to the problem.

To achieve our goal, we introduce the mappings F : D → Ω and
G : Ω → D, that are defined by

F (w) =
1
π

log
(
i
1 − w

1 + w

)
and G(z) =

i− eπz

i+ eπz
.

These two functions, which are obtained from composing mappings from
examples in the previous sections, are conformal and inverses to one
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u = f0

u = f1

z = iy

Ω

Figure 2. The Dirichlet problem in a strip

another. Tracing through the boundary behavior of F , we find that it
maps the lower half-circle to the line i+ R, and the upper half-circle to
R. More precisely, as ϕ travels from −π to 0, then F (eiϕ) goes from
i+ ∞ to i−∞, and as ϕ travels from 0 to π, then F (eiϕ) goes from −∞
to ∞ on the real line.

With the behavior of F on the circle in mind, we define

f̃1(ϕ) = f1(F (eiϕ) − i) whenever −π < ϕ < 0,

and

f̃0(ϕ) = f0(F (eiϕ)) whenever 0 < ϕ < π.

Then, since f0 and f1 vanish at infinity, the function f̃ that is equal
to f̃1 on the lower semi-circle, f̃0 on the upper semi-circle, and 0 at the
points ϕ = ±π, 0, is continuous on the whole circle. The solution to the
Dirichlet problem in the unit disc with boundary data f̃ is given by the
Poisson integral3

ũ(w) =
1
2π

∫ π

−π

Pr(θ − ϕ)f̃(ϕ) dϕ

=
1
2π

∫ 0

−π

Pr(θ − ϕ)f̃1(ϕ) dϕ+
1
2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ,

where w = reiθ, and

Pr(θ) =
1 − r2

1 − 2r cos θ + r2

3We refer the reader to Chapter 2 in Book I for a detailed discussion of the Dirichlet
problem in the disc and the Poisson integral formula. Also, the Poisson integral formula
is deduced in Exercise 12 of Chapter 2 and Problem 2 in Chapter 3 of this book.
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is the Poisson kernel. Lemma 1.3 guarantees that the function u, defined
by

u(z) = ũ(G(z)),

is harmonic in the strip. Moreover, our construction also insures that u
has the correct boundary values.

A formula for u in terms of f0 and f1 is first obtained at the points z =
iy with 0 < y < 1. The appropriate change of variables (see Exercise 7)
shows that if reiθ = G(iy), then

1
2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ =
sin πy

2

∫ ∞

−∞

f0(t)
coshπt− cosπy

dt.

A similar calculation also establishes

1
2π

∫ π

0

Pr(θ − ϕ)f̃1(ϕ) dϕ =
sinπy

2

∫ ∞

−∞

f1(t)
coshπt+ cosπy

dt.

Adding these last two integrals provides a formula for u(0, y). In gen-
eral, we recall from Exercise 13 in Chapter 5 of Book I, that a solution to
the Dirichlet problem in the strip vanishing at infinity is unique. Conse-
quently, a translation of the boundary condition by x results in a trans-
lation of the solution by x as well. We may therefore apply the same
argument to f0(x+ t) and f1(x+ t) (with x fixed), and a final change of
variables shows that

u(x, y) =
sin πy

2

(∫ ∞

−∞

f0(x− t)
coshπt− cosπy

dt+
∫ ∞

−∞

f1(x− t)
coshπt+ cosπy

dt

)
,

which gives a solution to the Dirichlet problem in the strip. In partic-
ular, we find that the solution is given in terms of convolutions with
the functions f0 and f1. Also, note that at the mid-point of the strip
(y = 1/2), the solution is given by integration with respect to the func-
tion 1/ coshπt; this function happens to be its own Fourier transform,
as we saw in Example 3, Chapter 3.

Remarks about the Dirichlet problem

The example above leads us to envisage the solution of the more general
Dirichlet problem for Ω (a suitable region), if we know a conformal map F
from the disc D to Ω. That is, suppose we wish to solve (1), where f is
an assigned continuous function and ∂Ω is the boundary of Ω. Assuming
we have a conformal map F from D to Ω (that extends to a continuous
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bijection of the boundary of the disc to the boundary of Ω), then f̃ =
f ◦ F is defined on the circle, and we can solve the Dirichlet problem
for the disc with boundary data f̃ . The solution is given by the Poisson
integral formula

ũ(reiθ) =
1
2π

∫ 2π

0

Pr(θ − ϕ)f̃(eiϕ) dϕ,

where Pr is the Poisson kernel. Then, one can expect that the solution
of the original problem is given by u = ũ ◦ F−1.

Success with this approach requires that we are able to resolve affir-
matively two questions:

• Does there exist a conformal map Φ = F−1 from Ω to D?

• If so, does this map extend to a continuous bijection from the
boundary of Ω to the boundary of D?

The first question, that of existence, is settled by the Riemann mapping
theorem, which we prove in the next section. It is completely general
(assuming only that Ω is a proper subset of C that is simply connected),
and necessitates no regularity of the boundary of Ω. A positive answer
to the second question requires some regularity of ∂Ω. A particular case,
when Ω is the interior of a polygon, is treated below in Section 4.3. (See
Exercise 18 and Problem 6 for more general assertions.)

It is interesting to note that in Riemann’s original approach to the
mapping problem, the chain of implications was reversed: his idea was
that the existence of the conformal map Φ from Ω to D is a consequence
of the solvability of the Dirichlet problem in Ω. He argued as follows.
Suppose we wish to find such a Φ, with the property that a given point
z0 ∈ Ω is mapped to 0. Then Φ must be of the form

Φ(z) = (z − z0)G(z),

where G is holomorphic and non-vanishing in Ω. Hence we can take

Φ(z) = (z − z0)eH(z),

for suitable H. Now if u(z) is the harmonic function given by u = Re(H),
then the fact that |Φ(z)| = 1 on ∂Ω means that u must satisfy the bound-
ary condition u(z) = log(1/|z − z0|) for z ∈ ∂Ω. So if we can find such a
solution u of the Dirichlet problem,4 we can construct H, and from this
the mapping function Φ.

4The harmonic function u(z) is also known as the Green’s function with source z0 for
the region Ω.
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However, there are several shortcomings to this method. First, one
has to verify that Φ is a bijection. In addition, to succeed, this method
requires some regularity of the boundary of Ω. Moreover, one is still
faced with the question of solving the Dirichlet problem for Ω. At this
stage Riemann proposed using the “Dirichlet principle.” But applying
this idea involves difficulties that must be overcome.5

Nevertheless, using different methods, one can prove the existence of
the mapping in the general case. This approach is carried out below in
Section 3.

2 The Schwarz lemma; automorphisms of the disc and

upper half-plane

The statement and proof of the Schwarz lemma are both simple, but the
applications of this result are far-reaching. We recall that a rotation is
a map of the form z 	→ cz with |c| = 1, namely c = eiθ, where θ ∈ R is
called the angle of rotation and is well-defined up to an integer multiple
of 2π.

Lemma 2.1 Let f : D → D be holomorphic with f(0) = 0. Then

(i) |f(z)| ≤ |z| for all z ∈ D.

(ii) If for some z0 �= 0 we have |f(z0)| = |z0|, then f is a rotation.

(iii) |f ′(0)| ≤ 1, and if equality holds, then f is a rotation.

Proof. We first expand f in a power series centered at 0 and conver-
gent in all of D

f(z) = a0 + a1z + a2z
2 + · · · .

Since f(0) = 0 we have a0 = 0, and therefore f(z)/z is holomorphic in
D (since it has a removable singularity at 0). If |z| = r < 1, then since
|f(z)| ≤ 1 we have ∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1
r
,

and by the maximum modulus principle, we can conclude that this is
true whenever |z| ≤ r. Letting r → 1 gives the first result.

For (ii), we see that f(z)/z attains its maximum in the interior of D and
must therefore be constant, say f(z) = cz. Evaluating this expression

5An implementation of Dirichlet’s principle in the present two-dimensional situation is
taken up in Book III.
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at z0 and taking absolute values, we find that |c| = 1. Therefore, there
exists θ ∈ R such that c = eiθ, and that explains why f is a rotation.

Finally, observe that if g(z) = f(z)/z, then |g(z)| ≤ 1 throughout D,
and moreover

g(0) = lim
z→0

f(z)− f(0)
z

= f ′(0).

Hence, if |f ′(0)| = 1, then |g(0)| = 1, and by the maximum principle g is
constant, which implies f(z) = cz with |c| = 1.

Our first application of this lemma is to the determination of the au-
tomorphisms of the disc.

2.1 Automorphisms of the disc

A conformal map from an open set Ω to itself is called an automor-
phism of Ω. The set of all automorphisms of Ω is denoted by Aut(Ω),
and carries the structure of a group. The group operation is composition
of maps, the identity element is the map z 	→ z, and the inverses are sim-
ply the inverse functions. It is clear that if f and g are automorphisms
of Ω, then f ◦ g is also an automorphism, and in fact, its inverse is given
by

(f ◦ g)−1 = g−1 ◦ f−1.

As mentioned above, the identity map is always an automorphism. We
can give other more interesting automorphisms of the unit disc. Obvi-
ously, any rotation by an angle θ ∈ R, that is, rθ : z 	→ eiθz, is an auto-
morphism of the unit disc whose inverse is the rotation by the angle −θ,
that is, r−θ : z 	→ e−iθz. More interesting, are the automorphisms of the
form

ψα(z) =
α− z

1 − αz
, where α ∈ C with |α| < 1.

These mappings, which where introduced in Exercise 7 of Chapter 1,
appear in a number of problems in complex analysis because of their
many useful properties. The proof that they are automorphisms of D is
quite simple. First, observe that since |α| < 1, the map ψα is holomorphic
in the unit disc. If |z| = 1 then z = eiθ and

ψα(eiθ) =
α− eiθ

eiθ(e−iθ − α)
= e−iθw

w
,

where w = α− eiθ, therefore |ψα(z)| = 1. By the maximum modulus
principle, we conclude that |ψα(z)| < 1 for all z ∈ D. Finally we make
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the following very simple observation:

(ψα ◦ ψα) (z) =
α− α−z

1−αz

1 − α α−z
1−αz

=
α− |α|2z − α+ z

1 − αz − |α|2 + αz

=
(1 − |α|2)z
1 − |α|2

= z,

from which we conclude that ψα is its own inverse! Another important
property of ψα is that it vanishes at z = α; moreover it interchanges 0
and α, namely

ψα(0) = α and ψα(α) = 0.

The next theorem says that the rotations combined with the maps ψα

exhaust all the automorphisms of the disc.

Theorem 2.2 If f is an automorphism of the disc, then there exist θ ∈
R and α ∈ D such that

f(z) = eiθ α− z

1 − αz
.

Proof. Since f is an automorphism of the disc, there exists a unique
complex number α ∈ D such that f(α) = 0. Now we consider the au-
tomorphism g defined by g = f ◦ ψα. Then g(0) = 0, and the Schwarz
lemma gives

(2) |g(z)| ≤ |z| for all z ∈ D.

Moreover, g−1(0) = 0, so applying the Schwarz lemma to g−1, we find
that

|g−1(w)| ≤ |w| for all w ∈ D.

Using this last inequality for w = g(z) for each z ∈ D gives

(3) |z| ≤ |g(z)| for all z ∈ D.

Combining (2) and (3) we find that |g(z)| = |z| for all z ∈ D, and by the
Schwarz lemma we conclude that g(z) = eiθz for some θ ∈ R. Replacing
z by ψα(z) and using the fact that (ψα ◦ ψα)(z) = z, we deduce that
f(z) = eiθψα(z), as claimed.

Setting α = 0 in the theorem yields the following result.
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Corollary 2.3 The only automorphisms of the unit disc that fix the ori-
gin are the rotations.

Note that by the use of the mappings ψα, we can see that the group of
automorphisms of the disc acts transitively, in the sense that given any
pair of points α and β in the disc, there is an automorphism ψ mapping
α to β. One such ψ is given by ψ = ψβ ◦ ψα.

The explicit formulas for the automorphisms of D give a good de-
scription of the group Aut(D). In fact, this group of automorphisms is
“almost” isomorphic to a group of 2 × 2 matrices with complex entries
often denoted by SU(1, 1). This group consists of all 2 × 2 matrices that
preserve the hermitian form on C2 × C2 defined by

〈Z,W 〉 = z1w1 − z2w2,

where Z = (z1, z2) and W = (w1, w2). For more information about this
subject, we refer the reader to Problem 4.

2.2 Automorphisms of the upper half-plane

Our knowledge of the automorphisms of D together with the conformal
map F : H → D found in Section 1.1 allow us to determine the group of
automorphisms of H which we denote by Aut(H).

Consider the map

Γ : Aut(D) → Aut(H)

given by “conjugation by F”:

Γ(ϕ) = F−1 ◦ ϕ ◦ F.

It is clear that Γ(ϕ) is an automorphism of H whenever ϕ is an auto-
morphism of D, and Γ is a bijection whose inverse is given by Γ−1(ψ) =
F ◦ ψ ◦ F−1. In fact, we prove more, namely that Γ preserves the oper-
ations on the corresponding groups of automorphisms. Indeed, suppose
that ϕ1, ϕ2 ∈ Aut(D). Since F ◦ F−1 is the identity on D we find that

Γ(ϕ1 ◦ ϕ2) = F−1 ◦ ϕ1 ◦ ϕ2 ◦ F
= F−1 ◦ ϕ1 ◦ F ◦ F−1 ◦ ϕ2 ◦ F
= Γ(ϕ1) ◦ Γ(ϕ2).

The conclusion is that the two groups Aut(D) and Aut(H) are the same,
since Γ defines an isomorphism between them. We are still left with the
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task of giving a description of elements of Aut(H). A series of calcula-
tions, which consist of pulling back the automorphisms of the disc to the
upper half-plane via F , can be used to verify that Aut(H) consists of all
maps

z 	→ az + b

cz + d
,

where a, b, c, and d are real numbers with ad− bc = 1. Again, a matrix
group is lurking in the background. Let SL2(R) denote the group of all
2 × 2 matrices with real entries and determinant 1, namely

SL2(R) =
{
M =

(
a b
c d

)
: a, b, c, d ∈ R and det(M ) = ad− bc=1

}
.

This group is called the special linear group.
Given a matrix M ∈ SL2(R) we define the mapping fM by

fM(z) =
az + b

cz + d
.

Theorem 2.4 Every automorphism of H takes the form fM for some
M ∈ SL2(R). Conversely, every map of this form is an automorphism of
H.

The proof consists of a sequence of steps. For brevity, we denote the
group SL2(R) by G.

Step 1. If M ∈ G, then fM maps H to itself. This is clear from the
observation that

(4) Im(fM(z)) =
(ad− bc)Im(z)

|cz + d|2 =
Im(z)

|cz + d|2 > 0 whenever z ∈ H.

Step 2. If M and M ′ are two matrices in G, then fM ◦ fM ′ = fMM ′ .
This follows from a straightforward calculation, which we omit. As a
consequence, we can prove the first half of the theorem. Each fM is an
automorphism because it has a holomorphic inverse (fM)−1, which is
simply fM−1 . Indeed, if I is the identity matrix, then

(fM ◦ fM−1)(z) = fMM−1(z) = fI(z) = z.

Step 3. Given any two points z and w in H, there exists M ∈ G such
that fM (z) = w, and therefore G acts transitively on H. To prove this,
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it suffices to show that we can map any z ∈ H to i. Setting d = 0 in
equation (4) above gives

Im(fM (z)) =
Im(z)
|cz|2

and we may choose a real number c so that Im(fM (z)) = 1. Next we
choose the matrix

M1 =
(

0 −c−1

c 0

)
so that fM1(z) has imaginary part equal to 1. Then we translate by a
matrix of the form

M2 =
(

1 b
0 1

)
with b ∈ R,

to bring fM1(z) to i. Finally, the map fM with M = M2M1 takes z to i.
Step 4. If θ is real, then the matrix

Mθ =
(

cos θ − sin θ
sin θ cos θ

)
belongs to G, and if F : H → D denotes the standard conformal map, then
F ◦ fMθ

◦ F−1 corresponds to the rotation of angle −2θ in the disc. This
follows from the fact that F ◦ fMθ

= e−2iθF (z), which is easily verified.
Step 5. We can now complete the proof of the theorem. We suppose

f is an automorphism of H with f(β) = i, and consider a matrix N ∈ G
such that fN (i) = β. Then g = f ◦ fN satisfies g(i) = i, and therefore
F ◦ g ◦ F−1 is an automorphism of the disc that fixes the origin. So
F ◦ g ◦ F−1 is a rotation, and by Step 4 there exists θ ∈ R such that

F ◦ g ◦ F−1 = F ◦ fMθ
◦ F−1.

Hence g = fMθ
, and we conclude that f = fMθN−1 which is of the desired

form.

A final observation is that the group Aut(H) is not quite isomorphic
with SL2(R). The reason for this is because the two matrices M and −M
give rise to the same function fM = f−M . Therefore, if we identify the
two matrices M and −M , then we obtain a new group PSL2(R) called
the projective special linear group; this group is isomorphic with
Aut(H).
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3 The Riemann mapping theorem

3.1 Necessary conditions and statement of the theorem

We now come to the promised cornerstone of this chapter. The basic
problem is to determine conditions on an open set Ω that guarantee the
existence of a conformal map F : Ω → D.

A series of simple observations allow us to find necessary conditions
on Ω. First, if Ω = C there can be no conformal map F : Ω → D, since
by Liouville’s theorem F would have to be a constant. Therefore, a
necessary condition is to assume that Ω �= C. Since D is connected, we
must also impose the requirement that Ω be connected. There is still
one more condition that is forced upon us: since D is simply connected,
the same must be true of Ω (see Exercise 3). It is remarkable that
these conditions on Ω are also sufficient to guarantee the existence of a
biholomorpism from Ω to D.

For brevity, we shall call a subset Ω of C proper if it is non-empty
and not the whole of C.

Theorem 3.1 (Riemann mapping theorem) Suppose Ω is proper and
simply connected. If z0 ∈ Ω, then there exists a unique conformal map
F : Ω → D such that

F (z0) = 0 and F ′(z0) > 0.

Corollary 3.2 Any two proper simply connected open subsets in C are
conformally equivalent.

Clearly, the corollary follows from the theorem, since we can use as
an intermediate step the unit disc. Also, the uniqueness statement in
the theorem is straightforward, since if F and G are conformal maps
from Ω to D that satisfy these two conditions, then H = F ◦G−1 is an
automorphism of the disc that fixes the origin. Therefore H(z) = eiθz,
and since H ′(0) > 0, we must have eiθ = 1, from which we conclude that
F = G.

The rest of this section is devoted to the proof of the existence of the
conformal map F . The idea of the proof is as follows. We consider all
injective holomorphic maps f : Ω → D with f(z0) = 0. From these we
wish to choose an f so that its image fills out all of D, and this can be
achieved by making f ′(z0) as large as possible. In doing this, we shall
need to be able to extract f as a limit from a given sequence of functions.
We turn to this point first.
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3.2 Montel’s theorem

Let Ω be an open subset of C. A family F of holomorphic functions on
Ω is said to be normal if every sequence in F has a subsequence that
converges uniformly on every compact subset of Ω (the limit need not be
in F).

The proof that a family of functions is normal is, in practice, the con-
sequence of two related properties, uniform boundedness and equiconti-
nuity. These we shall now define.

The family F is said to be uniformly bounded on compact subsets
of Ω if for each compact set K ⊂ Ω there exists B > 0, such that

|f(z)| ≤ B for all z ∈ K and f ∈ F .

Also, the family F is equicontinuous on a compact set K if for every
ε > 0 there exists δ > 0 such that whenever z, w ∈ K and |z − w| < δ,
then

|f(z) − f(w)| < ε for all f ∈ F .

Equicontinuity is a strong condition, which requires uniform continuity,
uniformly in the family. For instance, any family of differentiable func-
tions on [0, 1] whose derivatives are uniformly bounded is equicontinuous.
This follows directly from the mean value theorem. On the other hand,
note that the family {fn} on [0, 1] given by fn(x) = xn is not equicon-
tinuous since for any fixed 0 < x0 < 1 we have |fn(1) − fn(x0)| → 1 as n
tends to infinity.

The theorem that follows puts together these new concepts and is an
important ingredient in the proof of the Riemann mapping theorem.

Theorem 3.3 Suppose F is a family of holomorphic functions on Ω that
is uniformly bounded on compact subsets of Ω. Then:

(i) F is equicontinuous on every compact subset of Ω.

(ii) F is a normal family.

The theorem really consists of two separate parts. The first part says
that F is equicontinuous under the assumption that F is a family of
holomorphic functions that is uniformly bounded on compact subsets of
Ω. The proof follows from an application of the Cauchy integral formula
and hence relies on the fact that F consists of holomorphic functions.
This conclusion is in sharp contrast with the real situation as illustrated
by the family of functions given by fn(x) = sin(nx) on (0, 1), which is
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uniformly bounded. However, this family is not equicontinuous and has
no convergent subsequence on any compact subinterval of (0, 1).

The second part of the theorem is not complex-analytic in nature.
Indeed, the fact that F is a normal family follows from assuming only
that F is uniformly bounded and equicontinuous on compact subsets of
Ω. This result is sometimes known as the Arzela-Ascoli theorem and its
proof consists primarily of a diagonalization argument.

We are required to prove convergence on arbitrary compact subsets of
Ω, therefore it is useful to introduce the following notion. A sequence
{K}∞=1 of compact subsets of Ω is called an exhaustion if

(a) K is contained in the interior of K+1 for all � = 1, 2, . . ..

(b) Any compact setK ⊂ Ω is contained inK for some �. In particular

Ω =
∞⋃

=1

K.

Lemma 3.4 Any open set Ω in the complex plane has an exhaustion.

Proof. If Ω is bounded, we let K denote the set of all points in Ω
at distance ≥ 1/� from the boundary of Ω. If Ω is not bounded, let K

denote the same set as above except that we also require |z| ≤ � for all
z ∈ K.

We may now begin the proof of Montel’s theorem. Let K be a compact
subset of Ω and choose r > 0 so small that D3r(z) is contained in Ω for
all z ∈ K. It suffices to choose r so that 3r is less than the distance
from K to the boundary of Ω. Let z, w ∈ K with |z − w| < r, and let
γ denote the boundary circle of the disc D2r(w). Then, by Cauchy’s
integral formula, we have

f(z) − f(w) =
1

2πi

∫
γ

f(ζ)
[

1
ζ − z

− 1
ζ − w

]
dζ.

Observe that ∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ = |z − w|
|ζ − z| |ζ − w| ≤

|z − w|
r2

since ζ ∈ γ and |z − w| < r. Therefore

|f(z) − f(w)| ≤ 1
2π

2πr
r2

B|z − w|,
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where B denotes the uniform bound for the family F in the compact
set consisting of all points in Ω at a distance ≤ 2r from K. Therefore
|f(z) − f(w)| < C|z − w|, and this estimate is true for all z, w ∈ K with
|z − w| < r and f ∈ F ; thus this family is equicontinuous, as was to be
shown.

To prove the second part of the theorem, we argue as follows. Let
{fn}∞n=1 be a sequence in F and K a compact subset of Ω. Choose a
sequence of points {wj}∞j=1 that is dense in Ω. Since {fn} is uniformly
bounded, there exists a subsequence {fn,1} = {f1,1, f2,1, f3,1, . . .} of {fn}
such that fn,1(w1) converges.

From {fn,1} we can extract a subsequence {fn,2} = {f1,2, f2,2, f3,2, . . .}
so that fn,2(w2) converges. We may continue this process, and extract a
subsequence {fn,j} of {fn,j−1} such that fn,j(wj) converges.

Finally, let gn = fn,n and consider the diagonal subsequence {gn}. By
construction, gn(wj) converges for each j, and we claim that equiconti-
nuity implies that gn converges uniformly on K. Given ε > 0, choose δ
as in the definition of equicontinuity, and note that for some J , the set
K is contained in the union of the discs Dδ(w1), . . . , Dδ(wJ ). Pick N so
large that if n,m > N , then

|gm(wj) − gn(wj)| < ε for all j = 1, . . . , J.

So if z ∈ K, then z ∈ Dδ(wj) for some 1 ≤ j ≤ J . Therefore,

|gn(z)− gm(z)| ≤ |gn(z)− gn(wj)| + |gn(wj) − gm(wj)|+

+ |gm(wj) − gm(z)| < 3ε

whenever n,m > N . Hence {gn} converges uniformly on K.
Finally, we need one more diagonalization argument to obtain a sub-

sequence that converges uniformly on every compact subset of Ω. Let
K1 ⊂ K2 ⊂ · · · ⊂ K ⊂ · · · be an exhaustion of Ω, and suppose {gn,1} is
a subsequence of the original sequence {fn} that converges uniformly on
K1. Extract from {gn,1} a subsequence {gn,2} that converges uniformly
on K2, and so on. Then, {gn,n} is a subsequence of {fn} that converges
uniformly on every K and since the K exhaust Ω, the sequence {gn,n}
converges uniformly on any compact subset of Ω, as was to be shown.

We need one further result before we can give the proof of the Riemann
mapping theorem.

Proposition 3.5 If Ω is a connected open subset of C and {fn} a se-
quence of injective holomorphic functions on Ω that converges uniformly
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on every compact subset of Ω to a holomorphic function f , then f is
either injective or constant.

Proof. We argue by contradiction and suppose that f is not injective,
so there exist distinct complex numbers z1 and z2 in Ω such that f(z1) =
f(z2). Define a new sequence by gn(z) = fn(z)− fn(z1), so that gn has
no other zero besides z1, and the sequence {gn} converges uniformly on
compact subsets of Ω to g(z) = f(z) − f(z1). If g is not identically zero,
then z2 is an isolated zero for g (because Ω is connected); therefore

1 =
1

2πi

∫
γ

g′(ζ)
g(ζ)

dζ,

where γ is a small circle centered at z2 chosen so that g does not vanish
on γ or at any point of its interior besides z2. Therefore, 1/gn converges
uniformly to 1/g on γ, and since g′n → g′ uniformly on γ we have

1
2πi

∫
γ

g′n(ζ)
gn(ζ)

dζ → 1
2πi

∫
γ

g′(ζ)
g(ζ)

dζ.

But this is a contradiction since gn has no zeros inside γ, and hence

1
2πi

∫
γ

g′n(ζ)
gn(ζ)

dζ = 0 for all n .

3.3 Proof of the Riemann mapping theorem

Once we have established the technical results above, the rest of the
proof of the Riemann mapping theorem is very elegant. It consists of
three steps, which we isolate.

Step 1. Suppose that Ω is a simply connected proper open subset of
C. We claim that Ω is conformally equivalent to an open subset of the
unit disc that contains the origin. Indeed, choose a complex number α
that does not belong to Ω, (recall that Ω is proper), and observe that
z − α never vanishes on the simply connected set Ω. Therefore, we can
define a holomorphic function

f(z) = log(z − α)

with the desired properties of the logarithm. As a consequence one has,
ef(z) = z − α, which proves in particular that f is injective. Pick a point
w ∈ Ω, and observe that

f(z) �= f(w) + 2πi for all z ∈ Ω
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for otherwise, we exponentiate this relation to find that z = w, hence
f(z) = f(w), a contradiction. In fact, we claim that f(z) stays strictly
away from f(w) + 2πi, in the sense that there exists a disc centered at
f(w) + 2πi that contains no points of the image f(Ω). Otherwise, there
exists a sequence {zn} in Ω such that f(zn) → f(w) + 2πi. We exponen-
tiate this relation, and, since the exponential function is continuous, we
must have zn → w. But this implies f(zn) → f(w), which is a contra-
diction. Finally, consider the map

F (z) =
1

f(z) − (f(w) + 2πi)
.

Since f is injective, so is F , hence F : Ω → F (Ω) is a conformal map.
Moreover, by our analysis, F (Ω) is bounded. We may therefore translate
and rescale the function F in order to obtain a conformal map from Ω
to an open subset of D that contains the origin.

Step 2. By the first step, we may assume that Ω is an open subset of D

with 0 ∈ Ω. Consider the family F of all injective holomorphic functions
on Ω that map into the unit disc and fix the origin:

F = {f : Ω → D holomorphic, injective and f(0) = 0}.

First, note that F is non-empty since it contains the identity. Also,
this family is uniformly bounded by construction, since all functions are
required to map into the unit disc.

Now, we turn to the question of finding a function f ∈ F that max-
imizes |f ′(0)|. First, observe that the quantities |f ′(0)| are uniformly
bounded as f ranges in F . This follows from the Cauchy inequality
(Corollary 4.3 in Chapter 2) for f ′ applied to a small disc centered at
the origin.

Next, we let

s = sup
f∈F

|f ′(0)|,

and we choose a sequence {fn} ⊂ F such that |f ′n(0)| → s as n→ ∞. By
Montel’s theorem (Theorem 3.3), this sequence has a subsequence that
converges uniformly on compact sets to a holomorphic function f on Ω.
Since s ≥ 1 (because z 	→ z belongs to F), f is non-constant, hence injec-
tive, by Proposition 3.5. Also, by continuity we have
|f(z)| ≤ 1 for all z ∈ Ω and from the maximum modulus principle we
see that |f(z)| < 1. Since we clearly have f(0) = 0, we conclude that
f ∈ F with |f ′(0)| = s.



230 Chapter 8. CONFORMAL MAPPINGS

Step 3. In this last step, we demonstrate that f is a conformal map
from Ω to D. Since f is already injective, it suffices to prove that f is
also surjective. If this were not true, we could construct a function in F
with derivative at 0 greater than s. Indeed, suppose there exists α ∈ D

such that f(z) �= α, and consider the automorphism ψα of the disc that
interchanges 0 and α, namely

ψα(z) =
α− z

1 − αz
.

Since Ω is simply connected, so is U = (ψα ◦ f)(Ω), and moreover, U
does not contain the origin. It is therefore possible to define a square
root function on U by

g(w) = e
1
2 log w.

Next, consider the function

F = ψg(α) ◦ g ◦ ψα ◦ f.

We claim that F ∈ F . Clearly F is holomorphic and it maps 0 to 0.
Also F maps into the unit disc since this is true of each of the functions
in the composition. Finally, F is injective. This is clearly true for the
automorphisms ψα and ψg(α); it is also true for the square root g and
the function f , since the latter is injective by assumption. If h denotes
the square function h(w) = w2, then we must have

f = ψ−1
α ◦ h ◦ ψ−1

g(α) ◦ F = Φ ◦ F.

But Φ maps D into D with Φ(0) = 0, and is not injective because F is
and h is not. By the last part of the Schwarz lemma, we conclude that
|Φ′(0)| < 1. The proof is complete once we observe that

f ′(0) = Φ′(0)F ′(0),

and thus

|f ′(0)| < |F ′(0)|,

contradicting the maximality of |f ′(0)| in F .
Finally, we multiply f by a complex number of absolute value 1 so

that f ′(0) > 0, which ends the proof.

For a variant of this proof, see Problem 7.
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Remark. It is worthwhile to point out that the only places where
the hypothesis of simple-connectivity entered in the proof were in the
uses of the logarithm and the square root. Thus it would have suf-
ficed to have assumed (in addition to the hypothesis that Ω is proper)
that Ω is holomorphically simply connected in the sense that for
any holomorphic function f in Ω and any closed curve γ in Ω, we have∫

γ
f(z) dz = 0. Further discussion of this point, and various equivalent

properties of simple-connectivity, are given in Appendix B.

4 Conformal mappings onto polygons

The Riemann mapping theorem guarantees the existence of a conformal
map from any proper, simply connected open set to the disc, or equiv-
alently to the upper half-plane, but this theorem gives little insight as
to the exact form of this map. In Section 1 we gave various explicit
formulas in the case of regions that have symmetries, but it is of course
unreasonable to ask for an explicit formula in the general case. There
is, however, another class of open sets for which there are nice formulas,
namely the polygons. Our aim in this last section is to give a proof of
the Schwarz-Christoffel formula, which describes the nature of conformal
maps from the disc (or upper half-plane) to polygons.

4.1 Some examples

We begin by studying some motivating examples. The first two corre-
spond to easy (but infinite and degenerate) cases.

Example 1. First, we investigate the conformal map from the upper
half-plane to the sector {z : 0 < arg z < απ}, with 0 < α < 2, given in
Section 1 by f(z) = zα. Anticipating the Schwarz-Christoffel formula
below, we write

zα = f(z) =
∫ z

0

f ′(ζ) dζ = α

∫ z

0

ζ−β dζ

with α+ β = 1, and where the integral is taken along any path in the
upper half-plane. In fact, by continuity and Cauchy’s theorem, we may
take the path of integration to lie in the closure of the upper half-plane.
Although the behavior of f follows immediately from the original defi-
nition, we study it in terms of the integral expression above, since this
provides insight for the general case treated later.

Note first that ζ−β is integrable near 0 since β < 1, therefore f(0) = 0.
Observe that when z is real and positive (z = x), then f ′(x) = αxα−1 is
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positive; also it is not finitely integrable at ∞. Therefore, as x travels
from 0 to ∞, we see that f(x) increases from 0 to ∞, thus f maps [0,∞)
to [0,∞). On the other hand, when z = x is negative, then

f ′(z) = α|x|α−1eiπ(α−1) = −α|x|α−1eiπα ,

so f maps the segment (−∞, 0] to (eiπα∞, 0]. The situation is illustrated
in Figure 3 where the infinite segment A is mapped to A′ and the segment
B is mapped to B′, with the direction of travel indicated in Figure 3.

B′

A′

0A B0

Figure 3. The conformal map zα

Example 2. Next, we consider for z ∈ H,

f(z) =
∫ z

0

dζ

(1 − ζ2)1/2
,

where the integral is taken from 0 to z along any path in the closed
upper half-plane. We choose the branch for (1 − ζ2)1/2 that makes it
holomorphic in the upper half-plane and positive when −1 < ζ < 1. As
a result

(1 − ζ2)−1/2 = i(ζ2 − 1)−1/2 when ζ > 1.

We observe that f maps the real line to the boundary of the half-strip
pictured in Figure 4.

In fact, since f(±1) = ±π/2, and f ′(x) > 0 if −1 < x < 1, we see that
f maps the segment B to B′. Moreover

f(x) =
π

2
+
∫ x

1

f ′(x) dx when x > 1, and
∫ ∞

1

dx

(x2 − 1)1/2
= ∞.

Thus, as x travels along the segment C, the image traverses the infinite
segment C′. Similarly segment A is mapped to A′.

Note the connection of this example with Example 8 in Section 1.2. In
fact, one can show that the function f(z) is the inverse to the function
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A′

B′

C′

π
2

−π
2

CA B

−1 1

Figure 4. Mapping of the boundary in Example 2

sin z, and hence f takes H conformally to the interior of the half-strip
bounded by the segments A′, B′, and C′.

Example 3. Here we take

f(z) =
∫ z

0

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
, z ∈ H,

where k is a fixed real number with 0 < k < 1 (the branch of
[(1 − ζ2) (1 − k2ζ2)]1/2 in the upper half-plane is chosen to be the one
that is positive when ζ is real and −1 < ζ < 1). Integrals of this kind
are called elliptic integrals, because variants of these arise in the cal-
culation of the arc-length of an ellipse. We shall observe that f maps the
real axis onto the rectangle shown in Figure 5(b), where K and K′ are
determined by

K =
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
, K′ =

∫ 1/k

1

dx

[(x2 − 1)(1 − k2x2)]1/2
.

We divide the real axis into four “segments,” with division points
−1/k, −1, 1, and 1/k (see Figure 5(a)). The segments are [−1/k,−1],
[−1, 1], [1, 1/k], and [1/k,−1/k], the last consisting of the union of the
two half-segments [1/k,∞) and (−∞,−1/k]. It is clear from the defini-
tions that f(±1) = ±K, and since f ′(x) > 0, when −1 < x < 1, it follows
that f maps the segment [−1, 1] to [−K,K]. Moreover, since

f(z) = K +
∫ x

1

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
if 1 < x < 1/k,
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(b)(a)
−1 1/k

A C ED

−1/k

B

1
K

K + iK ′

D′

C′

−K + iK ′ A′

B′

E′

−K

Figure 5. Mapping of the boundary in Example 3

we see that f maps the segment [1, 1/k] to [K,K + iK′], where K′ was
defined above. Similarly, f maps [−1/k,−1] to [−K + iK′,−K]. Next,
when x > 1/k we have

f ′(x) = − 1
[(x2 − 1)(k2x2 − 1)]1/2

,

and therefore,

f(x) = K + iK′ −
∫ x

1/k

dx

[(x2 − 1)(k2x2 − 1)]1/2
.

However,∫ ∞

1/k

dx

[(x2 − 1)(k2x2 − 1)]1/2
=
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
,

as can be seen by making the change of variables x = 1/ku in the in-
tegral on the left. Thus f maps the segment [1/k,∞) to the segment
[K + iK′, iK′). Similarly f maps (−∞,−1/k] to [−K + iK′, iK′). Al-
together, then, f maps the real axis to the above rectangle, with the
point at infinity corresponding to the mid-point of the upper side of the
rectangle.

The results obtained so far lead naturally to two problems.
The first, which we pursue next, consists of a generalization of the

above examples. More precisely we define the Schwarz-Christoffel inte-
gral and prove that it maps the real line to a polygonal line.

Second, we note that in the examples above little was inferred about
the behavior of f in H itself. In particular, we have not shown that f
maps H conformally to the interior of the corresponding polygon. Af-
ter a careful study of the boundary behavior of conformal maps, we



4. Conformal mappings onto polygons 235

prove a theorem that guarantees that the conformal map from the upper
half-plane to a simply connected region bounded by a polygonal line is
essentially given by a Schwarz-Christoffel integral.

4.2 The Schwarz-Christoffel integral

With the examples of the previous section in mind, we define the general
Schwarz-Christoffel integral by

(5) S(z) =
∫ z

0

dζ

(ζ −A1)β1 · · · (ζ −An)βn
.

Here A1 < A2 < · · · < An are n distinct points on the real axis arranged
in increasing order. The exponents βk will be assumed to satisfy the
conditions βk < 1 for each k and 1 <

∑n
k=1 βk.6

The integrand in (5) is defined as follows: (z −Ak)βk is that branch
(defined in the complex plane slit along the infinite ray {Ak + iy : y ≤ 0})
which is positive when z = x is real and x > Ak. As a result

(z −Ak)βk =

{
(x−Ak)βk if x is real and x > Ak,
|x−Ak|βkeiπβk if x is real and x < Ak.

The complex plane slit along the union of the rays ∪n
k=1{Ak + iy : y ≤ 0}

is simply connected (see Exercise 19), so the integral that defines S(z) is
holomorphic in this open set. Since the requirement βk < 1 implies that
the singularities (ζ −Ak)−βk are integrable near Ak, the function S is
continuous up to the real line, including the points Ak, with k = 1, . . . , n.
Finally, this continuity condition implies that the integral can be taken
along any path in the complex plane that avoids the union of the open
slits ∪n

k=1{Ak + iy : y < 0}.
Now ∣∣∣∣∣

n∏
k=1

(ζ −Ak)−βk

∣∣∣∣∣ ≤ c|ζ|−
∑

βk

for |ζ| large, so the assumption
∑
βk > 1 guarantees the convergence of

the integral (5) at infinity. This fact and Cauchy’s theorem imply that
limr→∞ S(reiθ) exists and is independent of the angle θ, 0 ≤ θ ≤ π. We
call this limit a∞, and we let ak = S(Ak) for k = 1, . . . , n.

6Note that the case
∑
βk ≤ 1, which occurs in Examples 1 and 2 above is excluded.

However, a modification of the proposition that follows can be made to take these cases
into account; but then S(z) is no longer bounded in the upper half-plane.
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Proposition 4.1 Suppose S(z) is given by (5).

(i) If
∑n

k=1 βk = 2, and p denotes the polygon whose vertices are given
(in order) by a1, . . . , an, then S maps the real axis onto p − {a∞}.
The point a∞ lies on the segment [an, a1] and is the image of the
point at infinity. Moreover, the (interior) angle at the vertex ak is
αkπ where αk = 1 − βk.

(ii) There is a similar conclusion when 1 <
∑n

k=1 βk < 2, except now
the image of the extended line is the polygon of n+ 1 sides with
vertices a1, a2, . . . , an, a∞. The angle at the vertex a∞ is α∞π
with α∞ = 1 − β∞, where β∞ = 2 −

∑n
k=1 βk.

Figure 6 illustrates the proposition. The idea of the proof is already
captured in Example 1 above.

ak

an

∑
βk = 2

Ak

R

ak

ana1 a∞

p

p

1 <
∑
βk < 2

AnA1

a1

a∞

Figure 6. Action of the integral S(z)

Proof. We assume that
∑n

k=1 βk = 2. If Ak < x < Ak+1 when
1 ≤ k ≤ n− 1, then

S′(x) =
∏
j≤k

(x− Aj)−βj

∏
j>k

(x−Aj)−βj .
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Hence

argS′(x) = arg

(∏
j>k

(x− Aj)−βj

)
= arg

∏
j>k

e−iπβj = −π
∑
j>k

βj ,

which of course is constant when x traverses the interval (Ak, Ak+1).
Since

S(x) = S(Ak) +
∫ x

Ak

S′(y) dy,

we see that as x varies from Ak to Ak+1, S(x) varies from S(Ak) =
ak to S(Ak+1) = ak+1 along the straight line segment7 [ak, ak+1], and
this makes an angle of −π

∑
j>k βj with the real axis. Similarly, when

An < x then S′(x) is positive, while if x < A1, the argument of S′(x)
is −π

∑n
k=1 βk = −2π, and so S′(x) is again positive. Thus as x varies

on [An,+∞), S(x) varies along a straight line (parallel to the x-axis)
between an and a∞; similarly S(x) varies along a straight line (parallel
to that axis) between a∞ and a1 as x varies in (−∞, A1]. Moreover, the
union of [an, a∞) and (a∞, a1] is the segment [an, a1] with the point a∞
removed.

Now the increase of the angle of [ak+1, ak] over that of [ak−1, ak] is
πβk, which means that the angle at the vertex ak is παk. The proof
when 1 <

∑n
k=1 βk < 2 is similar, and is left to the reader.

As elegant as this proposition is, it does not settle the problem of
finding a conformal map from the half-plane to a given region P that is
bounded by a polygon. There are two reasons for this.

1. It is not true for general n and generic choices of A1, . . . , An, that
the polygon (which is the image of the real axis under S) is simple,
that is, it does not cross itself. Nor is it true in general that the
mapping S is conformal on the upper half-plane.

2. Neither does the proposition show that starting with a simply con-
nected region P (whose boundary is a polygonal line p) the mapping
S is, for certain choices of A1, . . . , An and simple modifications, a
conformal map from H to P . That however is the case, and is the
result whose proof we now turn to.

7We denote the closed straight line segment between two complex numbers z and w
by [z,w], that is, [z,w] = {(1 − t)z + tw : t ∈ [0, 1]}. If we restrict 0 < t < 1, then (z,w)
denotes the open line segment between z and w. Similarly for the half-open segments
[z,w) and (z,w] obtained by restricting 0 ≤ t < 1 and 0 < t ≤ 1, respectively.
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4.3 Boundary behavior

In what follows we shall consider a polygonal region P , namely a
bounded, simply connected open set whose boundary is a polygonal line
p. In this context, we always assume that the polygonal line is closed,
and we sometimes refer to p as a polygon.

To study conformal maps from the half-plane H to P , we consider first
the conformal maps from the disc D to P , and their boundary behavior.

Theorem 4.2 If F : D → P is a conformal map, then F extends to a
continuous bijection from the closure D of the disc to the closure P of
the polygonal region. In particular, F gives rise to a bijection from the
boundary of the disc to the boundary polygon p.

The main point consists in showing that if z0 belongs to the unit circle,
then limz→z0 F (z) exists. To prove this, we need a preliminary result,
which uses the fact that if f : U → f(U ) is conformal, then

Area(f(U )) =
∫ ∫

U

|f ′(z)|2 dx dy.

This assertion follows from the definition, Area(f(U )) =
∫∫

f(U)
dx dy,

and the fact that the determinant of the Jacobian in the change of vari-
ables w = f(z) is simply |f ′(z)|2, an observation we made in equation (4),
Section 2.2, Chapter 1.

Lemma 4.3 For each 0 < r < 1/2, let Cr denote the circle centered at
z0 of radius r. Suppose that for all sufficiently small r we are given
two points zr and z′r in the unit disc that also lie on Cr. If we let
ρ(r) = |f(zr) − f(z′r)|, then there exists a sequence {rn} of radii that
tends to zero, and such that limn→∞ ρ(rn) = 0.

Proof. If not, there exist 0 < c and 0 < R < 1/2 such that c ≤ ρ(r)
for all 0 < r ≤ R. Observe that

f(zr) − f(z′r) =
∫

α

f ′(ζ) dζ,

where the integral is taken over the arc α on Cr that joins zr and z′r in
D. If we parametrize this arc by z0 + reiθ with θ1(r) ≤ θ ≤ θ2(r), then

ρ(r) ≤
∫ θ2(r)

θ1(r)

|f ′(z)|r dθ.
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We now apply the Cauchy-Schwarz inequality to see that

ρ(r) ≤
(∫ θ2(r)

θ1(r)

|f ′(z)|2r dθ
)1/2(∫ θ2(r)

θ1(r)

r dθ

)1/2

.

Squaring both sides and dividing by r yields

ρ(r)2

r
≤ 2π

∫ θ2(r)

θ1(r)

|f ′(z)|2r dθ.

We may now integrate both sides from 0 to R, and since c ≤ ρ(r) on that
region we obtain

c2
∫ R

0

dr

r
≤ 2π

∫ R

0

∫ θ2(r)

θ1(r)

|f ′(z)|2r dθdr ≤ 2π
∫ ∫

D

|f ′(z)|2 dxdy.

Now the left-hand side is infinite because 1/r is not integrable near the
origin, and the right-hand side is bounded because the area of the polyg-
onal region is bounded, so this yields the desired contradiction and con-
cludes the proof of the lemma.

Lemma 4.4 Let z0 be a point on the unit circle. Then F (z) tends to a
limit as z approaches z0 within the unit disc.

Proof. If not, there are two sequences {z1, z2, . . .} and {z′1, z′2, . . .}
in the unit disc that converge to z0 and are so that F (zn) and F (z′n)
converge to two distinct points ζ and ζ′ in the closure of P . Since F
is conformal, the points ζ and ζ′ must lie on the boundary p of P . We
may therefore choose two disjoint discs D and D′ centered at ζ and ζ′,
respectively, that are at a distance d > 0 from each other. For all large
n, F (zn) ∈ D and F (z′n) ∈ D′. Therefore, there exist two continuous
curves8 Λ and Λ′ in D ∩ P and D′ ∩ P , respectively, with F (zn) ∈ Λ and
F (z′n) ∈ Λ′ for all large n, and with the end-points of Λ and Λ′ equal to
ζ and ζ′, respectively.

Define λ = F−1(Λ) and λ′ = F−1(Λ′). Then λ and λ′ are two continu-
ous curves in D. Moreover, both λ and λ′ contain infinitely many points
in each sequence {zn} and {z′n}. Recall that these sequences converge to
z0. By continuity, the circle Cr centered at z0 and of radius r will inter-
sect λ and λ′ for all small r, say at some points zr ∈ λ and z′r ∈ λ′. This

8By a continuous curve, we mean the image of a continuous (not necessarily piecewise-
smooth) function from a closed interval [a, b] to C.
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z0
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D′

D

ζ

zr
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Figure 7. Illustration for the proof of Lemma 4.4

contradicts the previous lemma, because |F (zr) − F (z′r)| > d. Therefore
F (z) converges to a limit on p as z approaches z0 from within the unit
disc, and the proof is complete.

Lemma 4.5 The conformal map F extends to a continuous function
from the closure of the disc to the closure of the polygon.

Proof. By the previous lemma, the limit

lim
z→z0

F (z)

exists, and we define F (z0) to be the value of this limit. There re-
mains to prove that F is continuous on the closure of the unit disc.
Given ε, there exists δ such that whenever z ∈ D and |z − z0| < δ, then
|F (z) − F (z0)| < ε. Now if z belongs to the boundary of D and
|z − z0| < δ, then we may choose w such that |F (z) − F (w)| < ε and
|w − z0| < δ. Therefore

|F (z) − F (z0)| ≤ |F (z) − F (w)| + |F (w) − F (z0)| < 2ε,

and the lemma is established.

We may now complete the proof of the theorem. We have shown that
F extends to a continuous function from D to P . The previous argument
can be applied to the inverse G of F . Indeed, the key geometric property
of the unit disc that we used was that if z0 belongs to the boundary of
D, and C is any small circle centered at z0, then C ∩ D consists of an
arc. Clearly, this property also holds at every boundary point of the
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polygonal region P . Therefore, G also extends to a continuous function
from P to D. It suffices to now prove that the extensions of F and G
are inverses of each other. If z ∈ ∂D and {zk} is a sequence in the disc
that converges to z, then G(F (zk)) = zk, so after taking the limit and
using the fact that F is continuous, we conclude that G(F (z)) = z for all
z ∈ D. Similarly, F (G(w)) = w for all w ∈ P , and the theorem is proved.

The circle of ideas used in this proof can be used to prove more general
theorems on the boundary continuity of conformal maps. See Exercise 18
and Problem 6 below.

4.4 The mapping formula

Suppose P is a polygonal region bounded by a polygon p whose vertices
are ordered consecutively a1, a2, . . . , an, and with n ≥ 3. We denote by
παk the interior angle at ak, and define the exterior angle πβk by αk +
βk = 1. A simple geometric argument provides

∑n
k=1 βk = 2.

We shall consider conformal mappings of the half-plane H to P , and
make use of the results of the previous section regarding conformal maps
from the disc D to P . The standard correspondences w = (i− z)/(i+ z),
z = i(1 − w)/(1 + w) allows us to go back and forth between z ∈ H and
w ∈ D. Notice that the boundary point w = −1 of the circle corresponds
to the point at infinity on the line, and so the conformal map of H to
D extends to a continuous bijection of the boundary of H, which for the
purpose of this discussion includes the point at infinity.

Let F be a conformal map from H to P . (Its existence is guaranteed by
the Riemann mapping theorem and the previous discussion.) We assume
first that none of the vertices of p correspond to the point at infinity.
Therefore, there are real numbers A1, A2, . . . , An so that F (Ak) = ak for
all k. Since F is continuous and injective, and the vertices are numbered
consecutively, we may conclude that the Ak’s are in either increasing
or decreasing order. After relabeling the vertices ak and the points Ak,
we may assume that A1 < A2 < · · · < An. These points divide the real
line into n− 1 segments [Ak, Ak+1], 1 ≤ k ≤ n− 1, and the segment that
consists of the join of the two half-segments (−∞, A1] ∪ [An,∞). These
are mapped bijectively onto the corresponding sides of the polygon, that
is, the segments [ak, ak+1], 1 ≤ k ≤ n− 1, and [an, a1] (see Figure 8).

Theorem 4.6 There exist complex numbers c1 and c2 so that the con-
formal map F of H to P is given by

F (z) = c1S(z) + c2

where S is the Schwarz-Christoffel integral introduced in Section 4.2.
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ak

PH

A1 AnAk−1 Ak+1

ak+1

ak−1

παk

Ak

πβk

Figure 8. The mapping F

Proof. We first consider z in the upper half-plane lying above the
two adjacent segments [Ak−1, Ak] and [Ak, Ak+1], where 1 < k < n. We
note that F maps these two segments to two segments that intersect at
ak = F (Ak) at an angle παk.

By choosing a branch of the logarithm we can in turn define

hk(z) = (F (z) − ak)1/αk

for all z in the half-strip in the upper half-plane bounded by the lines
Re(z) = Ak−1 and Re(z) = Ak+1. Since F continues to the boundary of
H, the map hk is actually continuous up to the segment (Ak−1, Ak+1)
on the real line. By construction hk will map the segment [Ak−1, Ak+1]
to a (straight) segment Lk in the complex plane, with Ak mapped to
0. We may therefore apply the Schwarz reflection principle to see that
hk is analytically continuable to a holomorphic function in the two-way
infinite strip Ak−1 < Re(z) < Ak+1 (see Figure 9). We claim that h′k
never vanishes in that strip. First, if z belongs to the open upper half-
strip, then

F ′(z)
F (z) − F (Ak)

= αk
h′k(z)
hk(z)

,

and since F is conformal, we have F ′(z) �= 0 so h′k(z) �= 0 (Proposi-
tion 1.1). By reflection, this also holds in the lower half-strip, and it
remains to investigate points on the segment (Ak−1, Ak+1). If Ak−1 <
x < Ak+1, we note that the image under hk of a small half-disc centered
at x and contained in H lies on one side of the straight line segment
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AkAk−1 Ak+1

Figure 9. Schwarz reflection

Lk. Since hk is injective up to Lk (because F is) the symmetry in the
Schwarz reflection principle guarantees that hk is injective in the whole
disc centered at x, whence h′k(x) �= 0, whence h′k(z) �= 0 for all z in the
strip Ak−1 < Re(z) < Ak+1.

Now because F ′ = αkh
−βk

k h′k and F ′′ = −βkαkh
−βk−1
k (h′k)2 +

αkh
−βk

k h′′k , the fact that h′k(z) �= 0 implies that

F ′′(z)
F ′(z)

=
−βk

z −Ak
+Ek(z),

where Ek is holomorphic in the strip Ak−1 < Re(z) < Ak+1. A similar
result holds for k = 1 and k = n, namely

F ′′(z)
F ′(z)

= − β1

z −A1
+ E1,

where E1 is holomorphic in the strip −∞ < Re(z) < A2, and

F ′′(z)
F ′(z)

= − βn

z − An
+ En,

where En is holomorphic in the strip An−1 < Re(z) <∞. Finally, an-
other application of the reflection principle shows that F is continuable
in the exterior of a disc |z| ≤ R, for large R (say R > max1≤k≤n |Ak|). In-
deed, we may continue F across the union of the segments
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(−∞, A1) ∪ (An,∞) since their image under F is a straight line seg-
ment and Schwarz reflection applies. The fact that F maps the upper
half-plane to a bounded region shows that the analytic continuation of F
outside a large disc is also bounded, and hence holomorphic at infinity.
Thus F ′′/F ′ is holomorphic at infinity and we claim that it goes to 0 as
|z| → ∞. Indeed, we may expand F at z = ∞ as

F (z) = c0 +
c1
z

+
c2
z2

+ · · · .

This after differentiation shows that F ′′/F ′ decays like 1/z as |z| becomes
large, and proves our claim.

Altogether then, because the various strips overlap and cover the entire
complex plane,

F ′′(z)
F ′(z)

+
n∑

k=1

βk

z −Ak

is holomorphic in the entire plane and vanishes at infinity; thus, by Li-
ouville’s theorem it is zero. Hence

F ′′(z)
F ′(z)

= −
n∑

k=1

βk

z −Ak
.

From this we contend that F ′(z) = c(z −A1)−β1 · · · (z −An)−βn . In-
deed, denoting this product by Q(z), we have

Q′(z)
Q(z)

= −
n∑

k=1

βk

z − Ak
.

Therefore
d

dz

(
F ′(z)
Q(z)

)
= 0,

which proves the contention. A final integration yields the theorem.

We may now withdraw the hypothesis we made at the beginning that
F did not map the point at infinity to a vertex of P , and obtain a formula
for that case as well.

Theorem 4.7 If F is a conformal map from the upper half-plane to the
polygonal region P and maps the points A1, . . . , An−1,∞ to the vertices
of p, then there exist constants C1 and C2 such that

F (z) = C1

∫ z

0

dζ

(ζ −A1)β1 · · · (ζ −An−1)βn−1
+ C2.
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In other words, the formula is obtained by deleting the last term in
the Schwarz-Christoffel integral (5).

Proof. After a preliminary translation, we may assume that Aj �= 0
for j = 1, . . . , n− 1. Choose a point A∗

n > 0 on the real line, and consider
the fractional linear map defined by

Φ(z) = A∗
n − 1

z
.

Then Φ is an automorphism of the upper half-plane. Let A∗
k = Φ(Ak)

for k = 1, . . . , n− 1, and note that A∗
n = Φ(∞). Then

(F ◦ Φ−1)(A∗
k) = ak for all k = 1, 2, . . . , n.

We can now apply the Schwarz-Christoffel formula just proved to find
that

(F ◦ Φ−1)(z′) = C1

∫ z′

0

dζ

(ζ −A∗
1)β1 · · · (ζ − A∗

n)βn
+ C2.

The change of variables ζ = Φ(w) satisfies dζ = dw/w2, and since we can
write 2 = β1 + · · · + βn, we obtain

(F ◦ Φ−1)(z′) = C1

∫ Φ−1(z′)

0

dw
(w(A∗

n−A∗
1)−1)β1 ···(w(A∗

n−A∗
n−1)−1)βn−1

+ C′
2

= C′
1

∫ Φ−1(z′)

0

dw
(w−1/(A∗

n−A∗
1))β1 ···(w−1/(A∗

n−A∗
n−1))βn−1

+ C′
2.

Finally, we note that 1/(A∗
n −A∗

k) = Ak and set Φ−1(z′) = z in the above
equation to conclude that

F (z) = C′
1

∫ z

0

dw

(w −A1)β1 · · · (w −An−1)βn−1
+ C′

2,

as was to be shown.

4.5 Return to elliptic integrals

We consider again the elliptic integral

I(z) =
∫ z

0

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
with 0 < k < 1,
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which arose in Example 3 of Section 4.1. We saw that it mapped the real
axis to the rectangle R with vertices −K, K, K + iK′, and −K + iK′.
We will now see that this mapping is a conformal mapping of H to the
interior of R.

According to Theorem 4.6 there is a conformal map F to the rectangle,
that maps four points on the real axis to the vertices of R. By preceding
this map with a suitable automorphism of H we may assume that F
maps −1, 0, 1 to −K, 0, K, respectively. Indeed, by using a preliminary
automorphism, we may assume that −K, 0, K are the images of points
A1, 0, A2 with A1 < 0 < A2; then we can further take A1 = −1 and
A2 = 1. See Exercise 15.

Next, let � be chosen with 0 < � < 1, so that 1/� is the point on the
real line mapped by F to the vertex K + iK′, which is the vertex next in
order after −K and K. We claim that F (−1/�) is the vertex −K + iK′.
Indeed, if F ∗(z) = −F (−z), then by the symmetry of R, F ∗ is also a
conformal map of H to R; moreover F ∗(0) = 0, and F ∗(±1) = ±K. Thus
F−1 ◦ F ∗ is an automorphism of H that fixes the points −1, 0, and 1.
Hence F−1 ◦ F ∗ is the identity (see Exercise 15), and F = F ∗, from which
it follows that

F (−1/�) = −F (1/�) = −K + iK′.

Therefore, by Theorem 4.6

F (z) = c1

∫ z

0

dζ

[(1 − ζ2)(1 − �2ζ2)]1/2
+ c2.

Setting z = 0 gives c2 = 0, and letting z = 1, z = 1/�, yields

K(k) = c1K(�) and K′(k) = c1K
′(�),

where

K(k) =
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
,

K′(k) =
∫ 1/k

1

dx

[(x2 − 1)(1 − k2x2)]1/2
.

Now K(k) is clearly strictly increasing as k varies in (0, 1). Moreover, a
change of variables (Exercise 24) establishes the identity

K′(k) = K(k̃) where k̃2 = 1 − k2 and k̃ > 0,
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and this shows that K′(k) is strictly decreasing. Hence K(k)/K′(k)
is strictly increasing. Since K(k)/K′(k) = K(�)/K′(�), we must have
k = �, and finally c1 = 1. This shows that I(z) = F (z), and hence I is
conformal, as was to be proved.

A final observation is of significance. A basic insight into elliptic in-
tegrals is obtained by passing to their inverse functions. We therefore
consider z 	→ sn(z), the inverse map of z 	→ I(z).9 It transforms the
closed rectangle into the closed upper half-plane. Now consider the se-
ries of rectangles R = R0, R1, R2, . . . gotten by reflecting successively
along the lower sides (Figure 10).

K − iK ′

K + iK ′

K

K − 2iK ′

R0

R1

R2

Figure 10. Reflections of R = R0

With sn(z) defined in R0, we can by the reflection principle extend
it to R1 by setting sn(z) = sn(z) whenever z ∈ R1 (note that then z ∈
R0). Next we can extend sn(z) to R2 by setting sn(z) = sn(−iK′ + z) if
z ∈ R2 and noting that if z ∈ R2, then −iK′ + z ∈ R1. Combining these
reflections and continuing this way we see that we can extend sn(z) in
the entire strip −K < Re(z) < K, so that sn(z) = sn(z + 2iK′).

Similarly, by reflecting in a series of horizontal rectangles, and combin-
ing these with the previous reflections, we see that sn(z) can be continued
to the complex plane and also satisfies sn(z) = sn(z + 4K). Thus sn(z)
is doubly periodic (with periods 4K and 2iK′). A further examination

9The notation sn(z) in somewhat different form is due to Jacobi, and was adopted
because of the analogy with sin z.
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shows that the only singularities sn(z) are poles. Functions of this type,
called “elliptic functions,” are the subject of the next chapter.

5 Exercises

1. A holomorphic mapping f : U → V is a local bijection on U if for every z ∈ U
there exists an open disc D ⊂ U centered at z, so that f : D → f(D) is a bijection.

Prove that a holomorphic map f : U → V is a local bijection on U if and only
if f ′(z) 
= 0 for all z ∈ U .

[Hint: Use Rouché’s theorem as in the proof of Proposition 1.1.]

2. Supppose F (z) is holomorphic near z = z0 and F (z0) = F ′(z0) = 0, while
F ′′(z0) 
= 0. Show that there are two curves Γ1 and Γ2 that pass through z0,
are orthogonal at z0, and so that F restricted to Γ1 is real and has a minimum at
z0, while F restricted to Γ2 is also real but has a maximum at z0.

[Hint: Write F (z) = (g(z))2 for z near z0, and consider the mapping z �→ g(z) and
its inverse.]

3. Suppose U and V are conformally equivalent. Prove that if U is simply con-
nected, then so is V . Note that this conclusion remains valid if we merely assume
that there exists a continuous bijection between U and V .

4. Does there exist a holomorphic surjection from the unit disc to C?

[Hint: Move the upper half-plane “down” and then square it to get C.]

5. Prove that f(z) = − 1
2
(z + 1/z) is a conformal map from the half-disc

{z = x+ iy : |z| < 1, y > 0} to the upper half-plane.

[Hint: The equation f(z) = w reduces to the quadratic equation z2 + 2wz + 1 = 0,
which has two distinct roots in C whenever w 
= ±1. This is certainly the case if
w ∈ H.]

6. Give another proof of Lemma 1.3 by showing directly that the Laplacian of
u ◦ F is zero.

[Hint: The real and imaginary parts of F satisfy the Cauchy-Riemann equations.]

7. Provide all the details in the proof of the formula for the solution of the Dirichlet
problem in a strip discussed in Section 1.3. Recall that it suffices to compute the
solution at the points z = iy with 0 < y < 1.

(a) Show that if reiθ = G(iy), then

reiθ = i
cos πy

1 + sin πy
.

This leads to two separate cases: either 0 < y ≤ 1/2 and θ = π/2, or 1/2 ≤
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y < 1 and θ = −π/2. In either case, show that

r2 =
1 − sin πy

1 + sin πy
and Pr(θ − ϕ) =

sin πy

1 − cos πy sinϕ
.

(b) In the integral 1
2π

∫ π

0
Pr(θ − ϕ)f̃0(ϕ) dϕ make the change of variables t =

F (eiϕ). Observe that

eiϕ =
i− eπt

i+ eπt
,

and then take the imaginary part and differentiate both sides to establish
the two identities

sinϕ =
1

cosh πt
and

dϕ

dt
=

π

cosh πt
.

Hence deduce that

1

2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ =
1

2π

∫ π

0

sin πy

1 − cos πy sinϕ
f̃0(ϕ) dϕ

=
sin πy

2

∫ ∞

−∞

f0(t)

cosh πt− cosπy
dt.

(c) Use a similar argument to prove the formula for the integral
1
2π

∫ 0

−π
Pr(θ − ϕ)f̃1(ϕ) dϕ.

8. Find a harmonic function u in the open first quadrant that extends continuously
up to the boundary except at the points 0 and 1, and that takes on the following
boundary values: u(x, y) = 1 on the half-lines {y = 0, x > 1} and {x = 0, y > 0},
and u(x, y) = 0 on the segment {0 < x < 1, y = 0}.
[Hint: Find conformal maps F1, F2, . . . , F5 indicated in Figure 11. Note that
1
π

arg(z) is harmonic on the upper half-plane, equals 0 on the positive real axis,
and 1 on the negative real axis.]

9. Prove that the function u defined by

u(x, y) = Re

(
i+ z

i− z

)
and u(0, 1) = 0

is harmonic in the unit disc and vanishes on its boundary. Note that u is not
bounded in D.

10. Let F : H → C be a holomorphic function that satisfies

|F (z)| ≤ 1 and F (i) = 0.
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u = 1u = 0u = 1

F1

u = 0u = 1u = 0u = 1 u = 1

u = 0

−π
2

π
2

u = 1

u = 0

u = 1

F2

F3

F4

u = 1

iπ

1−1

0

0 1 0

u = 1

10 u = 0

F5

u = 1

u = 1

Figure 11. Successive conformal maps in Exercise 8

Prove that

|F (z)| ≤
∣∣∣∣ z − i

z + i

∣∣∣∣ for all z ∈ H.

11. Show that if f : D(0, R) → C is holomorphic, with |f(z)| ≤M for someM > 0,
then ∣∣∣∣∣ f(z) − f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

.

[Hint: Use the Schwarz lemma.]

12. A complex number w ∈ D is a fixed point for the map f : D → D if f(w) = w.

(a) Prove that if f : D → D is analytic and has two distinct fixed points, then f
is the identity, that is, f(z) = z for all z ∈ D.



5. Exercises 251

(b) Must every holomorphic function f : D → D have a fixed point? [Hint: Con-
sider the upper half-plane.]

13. The pseudo-hyperbolic distance between two points z, w ∈ D is defined by

ρ(z,w) =

∣∣∣∣ z − w

1 − wz

∣∣∣∣ .
(a) Prove that if f : D → D is holomorphic, then

ρ(f(z), f(w)) ≤ ρ(z,w) for all z, w ∈ D.

Moreover, prove that if f is an automorphism of D then f preserves the
pseudo-hyperbolic distance

ρ(f(z), f(w)) = ρ(z,w) for all z, w ∈ D.

[Hint: Consider the automorphism ψα(z) = (z − α)/(1 − αz) and apply the
Schwarz lemma to ψf(w) ◦ f ◦ ψ−1

w .]

(b) Prove that

|f ′(z)|
1 − |f(z)|2 ≤ 1

1 − |z|2 for all z ∈ D.

This result is called the Schwarz-Pick lemma. See Problem 3 for an impor-
tant application of this lemma.

14. Prove that all conformal mappings from the upper half-plane H to the unit
disc D take the form

eiθ z − β

z − β
, θ ∈ R and β ∈ H.

15. Here are two properties enjoyed by automorphisms of the upper half-plane.

(a) Suppose Φ is an automorphism of H that fixes three distinct points on the
real axis. Then Φ is the identity.

(b) Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of three distinct points on
the real axis with

x1 < x2 < x3 and y1 < y2 < y3.

Prove that there exists (a unique) automorphism Φ of H so that Φ(xj) = yj ,
j = 1, 2, 3. The same conclusion holds if y3 < y1 < y2 or y2 < y3 < y1.
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16. Let

f(z) =
i− z

i+ z
and f−1(w) = i

1 − w

1 + w
.

(a) Given θ ∈ R, find real numbers a, b, c, d such that ad− bc = 1, and so that
for any z ∈ H

az + b

cz + d
= f−1

(
eiθf(z)

)
.

(b) Given α ∈ D find real numbers a, b, c, d so that ad− bc = 1, and so that for
any z ∈ H

az + b

cz + d
= f−1 (ψα(f(z))) ,

with ψα defined in Section 2.1.

(c) Prove that if g is an automorphism of the unit disc, then there exist real
numbers a, b, c, d such that ad− bc = 1 and so that for any z ∈ H

az + b

cz + d
= f−1 ◦ g ◦ f(z).

[Hint: Use parts (a) and (b).]

17. If ψα(z) = (α− z)/(1 − αz) for |α| < 1, prove that

1

π

∫ ∫
D

|ψ′
α|2 dxdy = 1 and

1

π

∫ ∫
D

|ψ′
α| dxdy =

1 − |α|2
|α|2 log

1

1 − |α|2 ,

where in the case α = 0 the expression on the right is understood as the limit as
|α| → 0.

[Hint: The first integral can be evaluated without a calculation. For the second,
use polar coordinates, and for each fixed r use contour integration to evaluate the
integral in θ.]

18. Suppose that Ω is a simply connected domain that is bounded by a piecewise-
smooth closed curve γ (in the terminology of Chapter 1). Then any conformal
map F of D to Ω extends to a continuous bijection of D to Ω. The proof is simply
a generalization of the argument used in Theorem 4.2.

19. Prove that the complex plane slit along the union of the rays
∪n

k=1{Ak + iy : y ≤ 0} is simply connected.

[Hint: Given a curve, first “raise” it so that it is completely contained in the upper
half-plane.]

20. Other examples of elliptic integrals providing conformal maps from the upper
half-plane to rectangles are given below.
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(a) The function ∫ z

0

dζ√
ζ(ζ − 1)(ζ − λ)

, with λ ∈ R and λ 
= 1

maps the upper half-plane conformally to a rectangle, one of whose vertices
is the image of the point at infinity.

(b) In the case λ = −1, the image of∫ z

0

dζ√
ζ(ζ2 − 1)

is a square whose side lengths are Γ2(1/4)

2
√

2π
.

21. We consider conformal mappings to triangles.

(a) Show that ∫ z

0

z−β1(1 − z)−β2 dz,

with 0 < β1 < 1, 0 < β2 < 1, and 1 < β1 + β2 < 2, maps H to a triangle
whose vertices are the images of 0, 1, and ∞, and with angles α1π, α2π,
and α3π, where αj + βj = 1 and β1 + β2 + β3 = 2.

(b) What happens when β1 + β2 = 1?

(c) What happens when 0 < β1 + β2 < 1?

(d) In (a), the length of the side of the triangle opposite angle αjπ is
sin(αjπ)

π
Γ(α1)Γ(α2)Γ(α3).

22. If P is a simply connected region bounded by a polygon with vertices a1, . . . , an

and angles α1π, . . . , αnπ, and F is a conformal map of the disc D to P , then there
exist complex numbers B1, . . . , Bn on the unit circle, and constants c1 and c2 so
that

F (z) = c1

∫ z

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn
+ c2.

[Hint: This follows from the standard correspondence between H and D and an
argument similar to that used in the proof of Theorem 4.7.]

23. If

F (z) =

∫ z

1

dζ

(1 − ζn)2/n
,
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then F maps the unit disc conformally onto the interior of a regular polygon with
n sides and perimeter

2
n−2

n

∫ π

0

(sin θ)−2/n dθ.

24. The elliptic integrals K and K′ defined for 0 < k < 1 by

K(k) =

∫ 1

0

dx

((1 − x2)(1 − k2x2))1/2
and K′(k) =

∫ 1/k

1

dx

((x2 − 1)(1 − k2x2))1/2

satisfy various interesting identities. For instance:

(a) Show that if k̃2 = 1 − k2 and 0 < k̃ < 1, then

K′(k) = K(k̃).

[Hint: Change variables x = (1 − k̃2y2)−1/2 in the integral defining K′(k).]

(b) Prove that if k̃2 = 1 − k2, and 0 < k̃ < 1, then

K(k) =
2

1 + k̃
K

(
1 − k̃

1 + k̃

)
.

[Hint: Change variables x = 2t/(1 + k̃ + (1 − k̃)t2).]

(c) Show that for 0 < k < 1 one has

K(k) =
π

2
F (1/2, 1/2, 1; k2),

where F the hypergeometric series. [Hint: This follows from the integral
representation for F given in Exercise 9, Chapter 6.]

6 Problems

1. Let f be a complex-valued C1 function defined in the neighborhood of a point
z0. There are several notions closely related to conformality at z0. We say that
f is isogonal at z0 if whenever γ(t) and η(t) are two smooth curves with γ(0) =
η(0) = z0, that make an angle θ there (|θ| < π), then f(γ(t)) and f(η(t)) make an
angle of θ′ at t = 0 with |θ′| = |θ| for all θ. Also, f is said to be isotropic if it
magnifies lengths by some factor for all directions emanating from z0, that is, if
the limit

lim
r→0

|f(z0 + reiθ) − f(z0)|
r

exists, is non-zero, and independent of θ.
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Then f is isogonal at z0 if and only if it is isotropic at z0; moreover, f is isogonal
at z0 if and only if either f ′(z0) exists and is non-zero, or the same holds for f
replaced by f .

2. The angle between two non-zero complex numbers z and w (taken in that order)
is simply the oriented angle, in (−π, π], that is formed between the two vectors in
R2 corresponding to the points z and w. This oriented angle, say α, is uniquely
determined by the two quantities

(z, w)

|z| |w| and
(z,−iw)

|z| |w|

which are simply the cosine and sine of α, respectively. Here, the notation (·, ·)
corresponds to the usual Euclidian inner product in R2, which in terms of complex
numbers takes the form (z, w) = Re(zw).

In particular, we may now consider two smooth curves γ : [a, b] → C and η :
[a, b] → C, that intersect at z0, say γ(t0) = η(t0) = z0, for some t0 ∈ (a, b). If the
quantities γ′(t0) and η′(t0) are non-zero, then they represent the tangents to the
curves γ and η at the point z0, and we say that the two curves intersect at z0 at
the angle formed by the two vectors γ′(t0) and η′(t0).

A holomorphic function f defined near z0 is said to preserve angles at z0 if
for any two smooth curves γ and η intersecting at z0, the angle formed between
the curves γ and η at z0 equals the angle formed between the curves f ◦ γ and
f ◦ η at f(z0). (See Figure 12 for an illustration.) In particular, we assume that
the tangents to the curves γ, η, f ◦ γ, and f ◦ η at the point z0 and f(z0) are all
non-zero.

η

γ

z0 f(z0)

f ◦ η f ◦ γ

Figure 12. Preservation of angles at z0

(a) Prove that if f : Ω → C is holomorphic, and f ′(z0) 
= 0, then f preserves
angles at z0. [Hint: Observe that

(f ′(z0)γ
′(t0), f

′(z0)η
′(t0)) = |f ′(z0)|2(γ′(t0), η

′(t0)).]

(b) Conversely, prove the following: suppose f : Ω → C is a complex-valued
function, that is real-differentiable at z0 ∈ Ω, and Jf (z0) 
= 0. If f preserves
angles at z0, then f is holomorphic at z0 with f ′(z0) 
= 0.
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3.∗ The Schwarz-Pick lemma (see Exercise 13) is the infinitesimal version of an
important observation in complex analysis and geometry.

For complex numbers w ∈ C and z ∈ D we define the hyperbolic length of w
at z by

‖w‖z =
|w|

1 − |z|2 ,

where |w| and |z| denote the usual absolute values. This length is sometimes
referred to as the Poincaré metric, and as a Riemann metric it is written as

ds2 =
|dz|2

(1 − |z|2)2 .

The idea is to think of w as a vector lying in the tangent space at z. Observe that
for a fixed w, its hyperbolic length grows to infinity as z approaches the boundary
of the disc. We pass from the infinitesimal hyperbolic length of tangent vectors to
the global hyperbolic distance between two points by integration.

(a) Given two complex numbers z1 and z2 in the disc, we define the hyperbolic
distance between them by

d(z1, z2) = inf
γ

∫ 1

0

‖γ′(t)‖γ(t) dt,

where the infimum is taken over all smooth curves γ : [0, 1] → D joining z1
and z2. Use the Schwarz-Pick lemma to prove that if f : D → D is holomor-
phic, then

d(f(z1), f(z2)) ≤ d(z1, z2) for any z1, z2 ∈ D.

In other words, holomorphic functions are distance-decreasing in the hyper-
bolic metric.

(b) Prove that automorphisms of the unit disc preserve the hyperbolic distance,
namely

d(ϕ(z1), ϕ(z2)) = d(z1, z2), for any z1, z2 ∈ D

and any automorphism ϕ. Conversely, if ϕ : D → D preserves the hyperbolic
distance, then either ϕ or ϕ is an automorphism of D.

(c) Given two points z1, z2 ∈ D, show that there exists an automorphism ϕ such
that ϕ(z1) = 0 and ϕ(z2) = s for some s on the segment [0, 1) on the real
line.

(d) Prove that the hyperbolic distance between 0 and s ∈ [0, 1) is

d(0, s) =
1

2
log

1 + s

1 − s
.
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(e) Find a formula for the hyperbolic distance between any two points in the
unit disc.

4.∗ Consider the group of matrices of the form

M =

(
a b
c d

)
,

that satisfy the following conditions:

(i) a, b, c, and d ∈ C,

(ii) the determinant of M is equal to 1,

(iii) the matrix M preserves the following hermitian form on C2 × C2:

〈Z,W 〉 = z1w1 − z2w2,

where Z = (z1, z2) and W = (w1, w2). In other words, for all Z,W ∈ C2

〈MZ,MW 〉 = 〈Z,W 〉.

This group of matrices is denoted by SU(1, 1).

(a) Prove that all matrices in SU(1, 1) are of the form(
a b

b a

)
,

where |a|2 − |b|2 = 1. To do so, consider the matrix

J =

(
1 0
0 −1

)
,

and observe that 〈Z,W 〉 = tWJZ, where tW denotes the conjugate trans-
pose of W .

(b) To every matrix in SU(1, 1) we can associate a fractional linear transforma-
tion

az + b

cz + d
.

Prove that the group SU(1, 1)/{±1} is isomorphic to the group of automor-
phisms of the disc. [Hint: Use the following association.]

e2iθ z − α

1 − αz
−→

 eiθ√
1−|α|2

− αeiθ√
1−|α|2

− αe−iθ√
1−|α|2

e−iθ√
1−|α|2

 .
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5. The following result is relevant to Problem 4 in Chapter 10 which treats modular
functions.

(a) Suppose that F : H → C is holomorphic and bounded. Also, suppose that
F (z) vanishes when z = irn, n = 1, 2, 3, . . ., where {rn} is a bounded se-
quence of positive numbers. Prove that if

∑∞
n=1 rn = ∞, then F = 0.

(b) If
∑
rn <∞, it is possible to construct a bounded function on the upper

half-plane with zeros precisely at the points irn.

For related results in the unit disc, see Problems 1 and 2 in Chapter 5.]

6.∗ The results of Exercise 18 extend to the case when γ is assumed merely to be
closed, simple, and continuous. The proof, however, requires further ideas.

7.∗ Applying ideas of Carathéodory, Koebe gave a proof of the Riemann mapping
theorem by constructing (more explicitly) a sequence of functions that converges
to the desired conformal map.

Starting with a Koebe domain, that is, a simply connected domain K0 ⊂ D that
is not all of D, and which contains the origin, the strategy is to find an injective
function f0 such that f0(K0) = K1 is a Koebe domain “larger” than K0. Then, one
iterates this process, finally obtaining functions Fn = fn ◦ · · · ◦ f0 : K0 → D such
that Fn(K0) = Kn+1 and limFn = F is a conformal map from K0 to D.

The inner radius of a region K ⊂ D that contains the origin is defined by
rK = sup{ρ ≥ 0 : D(0, ρ) ⊂ K}. Also, a holomorphic injection f : K → D is said to
be an expansion if f(0) = 0 and |f(z)| > |z| for all z ∈ K − {0}.

(a) Prove that if f is an expansion, then rf(K) ≥ rK and |f ′(0)| > 1. [Hint:
Write f(z) = zg(z) and use the maximum principle to prove that |f ′(0)| =
|g(0)| > 1.]

Suppose we begin with a Koebe domain K0 and a sequence of expansions
{f0, f1, . . . , fn, . . .}, so that Kn+1 = fn(Kn) are also Koebe domains. We then
define holomorphic maps Fn : K0 → D by Fn = fn ◦ · · · ◦ f0.

(b) Prove that for each n, the function Fn is an expansion. Moreover,
F ′

n(0) =
∏n

k=0 f
′
k(0), and conclude that limn→∞ |f ′

n(0)| = 1. [Hint: Prove
that the sequence {|F ′

n(0)|} has a limit by showing that it is bounded above
and monotone increasing. Use the Schwarz lemma.]

(c) Show that if the sequence is osculating, that is, rKn → 1 as n→ ∞, then
{Fn} converges uniformly on compact subsets of K0 to a conformal map
F : K0 → D. [Hint: If rF (K0) ≥ 1 then F is surjective.]

To construct the desired osculating sequence we shall use the automorphisms
ψα = (α− z)/(1 − αz).

(d) Given a Koebe domain K, choose a point α ∈ D on the boundary of K such
that |α| = rK, and also choose β ∈ D such that β2 = α. Let S denote the
square root of ψα on K such that S(0) = 0. Why is such a function well
defined? Prove that the function f : K → D defined by f(z) = ψβ ◦ S ◦ ψα
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is an expansion. Moreover, show that |f ′(0)| = (1 + rK)/2
√
rK. [Hint: To

prove that |f(z)| > |z| on K− {0} apply the Schwarz lemma to the inverse
function, namely ψα ◦ g ◦ ψβ where g(z) = z2.]

(e) Use part (d) to construct the desired sequence.

8.∗ Let f be an injective holomorphic function in the unit disc, with f(0) = 0 and
f ′(0) = 1. If we write f(z) = z + a2z

2 + a3z
3 · · · , then Problem 1 in Chapter 3

shows that |a2| ≤ 2. Bieberbach conjectured that in fact |an| ≤ n for all n ≥ 2;
this was proved by deBranges. This problem outlines an argument to prove the
conjecture under the additional assumption that the coefficients an are real.

(a) Let z = reiθ with 0 < r < 1, and show that if v(r, θ) denotes the imaginary
part of f(reiθ), then

anr
n =

2

π

∫ π

0

v(r, θ) sinnθ dθ.

(b) Show that for 0 ≤ θ ≤ π and n = 1, 2, . . . we have | sinnθ| ≤ n sin θ.

(c) Use the fact that an ∈ R to show that f(D) is symmetric with respect to
the real axis, and use this fact to show that f maps the upper half-disc into
either the upper or lower part of f(D).

(d) Show that for r small,

v(r, θ) = r sin θ[1 +O(r)],

and use the previous part to conclude that v(r, θ) sin θ ≥ 0 for all 0 < r < 1
and 0 ≤ θ ≤ π.

(e) Prove that |anr
n| ≤ nr, and let r → 1 to conclude that |an| ≤ n.

(f) Check that the function f(z) = z/(1 − z)2 satisfies all the hypotheses and
that |an| = n for all n.

9.∗ Gauss found a connection between elliptic integrals and the familiar operations
of forming arithmetic and geometric means.

We start with any pair (a, b) of numbers that satisfy a ≥ b > 0, and form the
arithmetic and geometric means of a and b, that is,

a1 =
a+ b

2
and b1 = (ab)1/2.

We then repeat these operations with a and b replaced by a1 and b1. Iterating
this process provides two sequences {an} and {bn} where an+1 and bn+1 are the
arithmetic and geometric means of an and bn, respectively.
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(a) Prove that the two sequences {an} and {bn} have a common limit. This
limit, which we denote by M(a, b), is called the arithmetic-geometric
mean of a and b. [Hint: Show that a ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ bn ≥ · · · ≥
b1 ≥ b and an − bn ≤ (a− b)/2n.]

(b) Gauss’s identity states that

1

M(a, b)
=

2

π

∫ π/2

0

dθ

(a2 cos2 θ + b2 sin2 θ)1/2
.

To prove this relation, show that if I(a, b) denotes the integral on the right-
hand side, then it suffices to establish the invariance of I , namely

(6) I(a, b) = I

(
a+ b

2
, (ab)1/2

)
.

Then, observe that the connection with elliptic integrals takes the form

I(a, b) =
1

a
K(k) =

1

a

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

where k2 = 1 − b2/a2,

and that the relation (6) is a consequence of the identity in (b) of Exercise 24.



9 An Introduction to Elliptic
Functions

The form that Jacobi had given to the theory of elliptic
functions was far from perfection; its flaws are obvious.
At the base we find three fundamental functions sn,
cn and dn. These functions do not have the same
periods...

In Weierstrass’ system, instead of three funda-
mental functions, there is only one, ℘(u), and it is the
simplest of all having the same periods. It has only
one double infinity; and finally its definition is so that
it does not change when one replaces one system of
periods by another equivalent system.

H. Poincaré, 1899

The theory of elliptic functions, which is of interest in several parts of
mathematics, initially grew out of the study of elliptic integrals. These
can be described generally as integrals of the form

∫
R(x,

√
P (x)) dx,

where R is a rational function and P a polynomial of degree three or
four.1 These integrals arose in computing the arc-length of an ellipse, or
of a lemniscate, and in a variety of other problems. Their early study was
centered on their special transformation properties and on the discovery
of an inherent double-periodicity. We have seen an example of this latter
phenomenon in the mapping function of the half-plane to a rectangle
taken up in Section 4.5 of the previous chapter.

It was Jacobi who transformed the subject by initiating the systematic
study of doubly-periodic functions (called elliptic functions). In this the-
ory, the theta functions he introduced played a decisive role. Weierstrass
after him developed another approach, which in its initial steps is simpler
and more elegant. It is based on his ℘ function, and in this chapter we
shall sketch the beginnings of that theory. We will go as far as to glimpse
a possible connection with number theory, by considering the Eisenstein
series and their expression involving divisor functions. A number of more
direct links with combinatorics and number theory arise from the theta

1The case when P is a quadratic polynomial is essentially that of “circular functions”,
and can be reduced to the trigonometric functions sinx, cos x, etc.
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functions, which we will take up in the next chapter. The remarkable
facts we shall see there attest to the great interest of these functions in
mathematics. As such they ought to soften the harsh opinion expressed
above about the imperfection of Jacobi’s theory.

1 Elliptic functions

We are interested in meromorphic functions f on C that have two periods;
that is, there are two non-zero complex numbers ω1 and ω2 such that

f(z + ω1) = f(z) and f(z + ω2) = f(z),

for all z ∈ C. A function with two periods is said to be doubly periodic.
The case when ω1 and ω2 are linearly dependent over R, that is

ω2/ω1 ∈ R, is uninteresting. Indeed, Exercise 1 shows that in this case f
is either periodic with a simple period (if the quotient ω2/ω1 is rational)
or f is constant (if ω2/ω1 is irrational). Therefore, we make the following
assumption: the periods ω1 and ω2 are linearly independent over R.

We now describe a normalization that we shall use extensively in this
chapter. Let τ = ω2/ω1. Since τ and 1/τ have imaginary parts of oppo-
site signs, and since τ is not real, we may assume (after possibly inter-
changing the roles of ω1 and ω2) that Im(τ) > 0. Observe now that the
function f has periods ω1 and ω2 if and only if the function F (z) = f(ω1z)
has periods 1 and τ , and moreover, the function f is meromorphic if and
only if F is meromorphic. Also the properties of f are immediately
deducible from those of F . We may therefore assume, without loss of
generality, that f is a meromorphic function on C with periods 1 and τ
where Im(τ) > 0.

Successive applications of the periodicity conditions yield

(1) f(z + n+mτ) = f(z) for all integers n,m and all z ∈ C,

and it is therefore natural to consider the lattice in C defined by

Λ = {n+mτ : n,m ∈ Z}.

We say that 1 and τ generate Λ (see Figure 1).
Equation (1) says that f is constant under translations by elements

of Λ. Associated to the lattice Λ is the fundamental parallelogram
defined by

P0 = {z ∈ C : z = a+ bτ where 0 ≤ a < 1 and 0 ≤ b < 1}.
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0

τ

1

Figure 1. The lattice Λ generated by 1 and τ

The importance of the fundamental parallelogram comes from the fact
that f is completely determined by its behavior on P0. To see this, we
need a definition: two complex numbers z and w are congruent modulo
Λ if

z = w + n+mτ for some n,m ∈ Z,

and we write z ∼ w. In other words, z and w differ by a point in the
lattice, z − w ∈ Λ. By (1) we conclude that f(z) = f(w) whenever z ∼ w.
If we can show that any point in z ∈ C is congruent to a unique point in
P0 then we will have proved that f is completely determined by its values
in the fundamental parallelogram. Suppose z = x+ iy is given, and write
z = a+ bτ where a, b ∈ R. This is possible since 1 and τ form a basis over
the reals of the two-dimensional vector space C. Then choose n and m to
be the greatest integers ≤ a and ≤ b, respectively. If we let w = z − n−
mτ , then by definition z ∼ w, and moreover w = (a− n) + (b−m)τ . By
construction, it is clear that w ∈ P0. To prove uniqueness, suppose that
w and w′ are two points in P0 that are congruent. If we write w = a+ bτ
and w′ = a′ + b′τ , then w − w′ = (a− a′) + (b− b′)τ ∈ Λ, and therefore
both a− a′ and b− b′ are integers. But since 0 ≤ a, a′ < 1, we have
−1 < a− a′ < 1, which then implies a− a′ = 0. Similarly b− b′ = 0, and
we conclude that w = w′.

More generally, a period parallelogram P is any translate of the
fundamental parallelogram, P = P0 + h with h ∈ C (see Figure 2).

Since we can apply the lemma to z − h, we conclude that every point
in C is congruent to a unique point in a given period parallelogram.
Therefore, f is uniquely determined by its behavior on any period par-
allelogram.
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h+ 1

h+ τ

P0 + h

h

Figure 2. A period parallelogram

Finally, note that Λ and P0 give rise to a covering (or tiling) of the
complex plane

(2) C =
⋃

n,m∈Z

(n+mτ + P0),

and moreover, this union is disjoint. This is immediate from the facts
we just collected and the definition of P0. We summarize what we have
seen so far.

Proposition 1.1 Suppose f is a meromorphic function with two periods
1 and τ which generate the lattice Λ. Then:

(i) Every point in C is congruent to a unique point in the fundamental
parallelogram.

(ii) Every point in C is congruent to a unique point in any given period
parallelogram.

(iii) The lattice Λ provides a disjoint covering of the complex plane, in
the sense of (2).

(iv) The function f is completely determined by its values in any period
parallelogram.

1.1 Liouville’s theorems

We can now see why we assumed from the beginning that f is meromor-
phic rather than just holomorphic.

Theorem 1.2 An entire doubly periodic function is constant.

Proof. The function is completely determined by its values on P0

and since the closure of P0 is compact, we conclude that the function is
bounded on C, hence constant by Liouville’s theorem in Chapter 2.
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A non-constant doubly periodic meromorphic function is called an el-
liptic function. Since a meromorphic function can have only finitely
many zeros and poles in any large disc, we see that an elliptic function
will have only finitely many zeros and poles in any given period parallel-
ogram, and in particular, this is true in the fundamental parallelogram.
Of course, nothing excludes f from having a pole or zero on the boundary
of P0.

As usual, we count poles and zeros with multiplicities. Keeping this
in mind we can prove the following theorem.

Theorem 1.3 The total number of poles of an elliptic function in P0 is
always ≥ 2.

In other words, f cannot have only one simple pole. It must have at
least two poles, and this does not exclude the case of a single pole of
multiplicity ≥ 2.

Proof. Suppose first that f has no poles on the boundary ∂P0 of the
fundamental parallelogram. By the residue theorem we have∫

∂P0

f(z) dz = 2πi
∑

resf,

and we contend that the integral is 0. To see this, we simply use the
periodicity of f . Note that∫

∂P0

f(z) dz =
∫ 1

0

f(z) dz +
∫ 1+τ

1

f(z) dz +
∫ τ

1+τ

f(z) dz +
∫ 0

τ

f(z) dz,

and the integrals over opposite sides cancel out. For instance∫ 1

0

f(z) dz +
∫ τ

1+τ

f(z) dz =
∫ 1

0

f(z) dz +
∫ 0

1

f(s+ τ) ds

=
∫ 1

0

f(z) dz +
∫ 0

1

f(s) ds

=
∫ 1

0

f(z) dz −
∫ 1

0

f(z) dz

= 0,

and similarly for the other pair of sides. Hence
∫

∂P0
f = 0 and

∑
resf =

0. Therefore f must have at least two poles in P0.
If f has a pole on ∂P0 choose a small h ∈ C so that if P = h+ P0,

then f has no poles on ∂P . Arguing as before, we find that f must have
at least two poles in P , and therefore the same conclusion holds for P0.
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The total number of poles (counted according to their multiplicities)
of an elliptic function is called its order. The next theorem says that
elliptic functions have as many zeros as they have poles, if the zeros are
counted with their multiplicities.

Theorem 1.4 Every elliptic function of order m has m zeros in P0.

Proof. Assuming first that f has no zeros or poles on the boundary
of P0, we know by the argument principle in Chapter 3 that∫

∂P0

f ′(z)
f(z)

dz = 2πi(Nz −Np)

where Nz and Np denote the number of zeros and poles of f in P0,
respectively. By periodicity, we can argue as in the proof of the previous
theorem to find that

∫
∂P0

f ′/f = 0, and therefore Nz = Np.
In the case when a pole or zero of f lies on ∂P0 it suffices to apply the

argument to a translate of P .

As a consequence, if f is elliptic then the equation f(z) = c has as
many solutions as the order of f for every c ∈ C, simply because f − c
is elliptic and has as many poles as f .

Despite the rather simple nature of the theorems above, there remains
the question of showing that elliptic functions exist. We now turn to a
constructive solution of this problem.

1.2 The Weierstrass ℘ function

An elliptic function of order two

This section is devoted to the basic example of an elliptic function. As
we have seen above, any elliptic function must have at least two poles;
we shall in fact construct one whose only singularity will be a double
pole at the points of the lattice generated by the periods.

Before looking at the case of doubly-periodic functions, let us first
consider briefly functions with only a single period. If one wished to
construct a function with period 1 and poles at all the integers, a simple
choice would be the sum

F (z) =
∞∑

n=−∞

1
z + n

.

Note that the sum remains unchanged if we replace z by z + 1, and the
poles are at the integers. However, the series defining F is not absolutely
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convergent, and to remedy this problem, we sum symmetrically, that is,
we define

F (z) = lim
N→∞

∑
|n|≤N

1
z + n

=
1
z

+
∞∑

n=1

[
1

z + n
+

1
z − n

]
.

On the far right-hand side, we have paired up the terms corresponding
to n and −n, a trick which makes the quantity in brackets O(1/n2),
and hence the last sum is absolutely convergent. As a consequence, F
is meromorphic with poles precisely at the integers. In fact, we proved
earlier in Chapter 5 that F (z) = π cotπz.

There is a second way to deal with the series
∑∞

−∞ 1/(z + n), which
is to write it as

1
z

+
∑
n�=0

[
1

z + n
− 1
n

]
,

where the sum is taken over all non-zero integers. Notice that 1/(z + n) −
1/n = O(1/n2), which makes this series absolutely convergent. More-
over, since

1
z + n

+
1

z − n
=
(

1
z + n

− 1
n

)
+
(

1
z − n

− 1
−n

)
,

we get the same sum as before.
In analogy to this, the idea is to mimic the above to produce our first

example of an elliptic function. We would like to write it as∑
ω∈Λ

1
(z + ω)2

,

but again this series does not converge absolutely. There are several
approaches to try to make sense of this series (see Problem 1), but the
simplest is to follow the second way we dealt with the cotangent series.

To overcome the non-absolute convergence of the series, let Λ∗ de-
note the lattice minus the origin, that is, Λ∗ = Λ − {(0, 0)}, and consider
instead the following series:

1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
,

where we have subtracted the factor 1/ω2 to make the sum converge.
The term in brackets is now

1
(z + ω)2

− 1
ω2

=
−z2 − 2zω
(z + ω)2ω2

= O

(
1
ω3

)
as |ω| → ∞,
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and the new series will define a meromorphic function with the desired
poles once we have proved the following lemma.

Lemma 1.5 The two series∑
(n,m)�=(0,0)

1
(|n| + |m|)r

and
∑

n+mτ∈Λ∗

1
|n+mτ |r

converge if r > 2.

Recall that according to the Note at the end of Chapter 7, the question
whether a double series converges absolutely is independent of the order
of summation. In the present case, we shall first sum in m and then in n.

For the first series, the usual integral comparison can be applied.2 For
each n �= 0 ∑

m∈Z

1
(|n| + |m|)r

=
1

|n|r + 2
∑
m≥1

1
(|n| + |m|)r

=
1

|n|r + 2
∑

k≥|n|+1

1
kr

≤ 1
|n|r + 2

∫ ∞

|n|

dx

xr

≤ 1
|n|r + C

1
|n|r−1

.

Therefore, r > 2 implies∑
(n,m)�=(0,0)

1
(|n| + |m|)r

=
∑
|m|�=0

1
|m|r +

∑
|n|�=0

∑
m∈Z

1
(|n| + |m|)r

≤
∑
|m|�=0

1
|m|r +

∑
|n|�=0

(
1

|n|r + C
1

|n|r−1

)
<∞.

To prove that the second series also converges, it suffices to show that
there is a constant c such that

|n| + |m| ≤ c|n+ τm| for all n,m ∈ Z.

2We simply use 1/kr ≤ 1/xr when k − 1 ≤ x ≤ k; see also the first figure in Chapter 8,
Book I.
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We use the notation x � y if there exists a positive constant a such that
x ≤ ay. We also write x ≈ y if both x � y and y � x hold. Note that for
any two positive numbers A and B, one has

(A2 +B2)1/2 ≈ A+ B.

On the one hand A ≤ (A2 +B2)1/2 and B ≤ (A2 +B2)1/2, so that
A+B ≤ 2(A2 +B2)1/2. On the other hand, it suffices to square both
sides to see that (A2 + B2)1/2 ≤ A+B.

The proof that the second series in Lemma 1.5 converges is now a
consequence of the following observation:

|n| + |m| ≈ |n+mτ | whenever τ ∈ H.

Indeed, if τ = s+ it with s, t ∈ R and t > 0, then

|n+mτ | = [(n+ms)2 + (mt)2]1/2 ≈ |n+ms| + |mt| ≈ |n+ms| + |m|,

by the previous observation. Then, |n+ms| + |m| ≈ |n| + |m|, by con-
sidering separately the cases when |n| ≤ 2 |m| |s| and |n| ≥ 2 |m| |s|.

Remark. The proof above shows that when r > 2 the series∑
|n+mτ |−r converges uniformly in every half-plane Im(τ) ≥ δ > 0.
In contrast, when r = 2 this series fails to converge (Exercise 3).

With this technical point behind us, we may now return to the defini-
tion of the Weierstrass ℘ function, which is given by the series

℘(z) =
1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
=

1
z2

+
∑

(n,m)�=(0,0)

[
1

(z + n+mτ)2
− 1

(n+mτ)2

]
.

We claim that ℘ is a meromorphic function with double poles at the
lattice points. To see this, suppose that |z| < R, and write

℘(z) =
1
z2

+
∑

|ω|≤2R

[
1

(z + ω)2
− 1
ω2

]
+
∑

|ω|>2R

[
1

(z + ω)2
− 1
ω2

]
.

The term in the second sum is O(1/|ω|3) uniformly for |z| < R, so by
Lemma 1.5 this second sum defines a holomorphic function in |z| < R.
Finally, note that the first sum exhibits double poles at the lattice points
in the disc |z| < R.
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Observe that because of the insertion of the terms −1/ω2, it is no
longer obvious whether ℘ is doubly periodic. Nevertheless this is true,
and ℘ has all the properties of an elliptic function of order 2. We gather
this result in a theorem.

Theorem 1.6 The function ℘ is an elliptic function that has periods 1
and τ , and double poles at the lattice points.

Proof. It remains only to prove that ℘ is periodic with the correct
periods. To do so, note that the derivative is given by differentiating the
series for ℘ termwise so

℘′(z) = −2
∑

n,m∈Z

1
(z + n+mτ)3

.

This accomplishes two things for us. First, the differentiated series con-
verges absolutely whenever z is not a lattice point, by the case r = 3 of
Lemma 1.5. Second, the differentiation also eliminates the subtraction
term 1/ω2; therefore the series for ℘′ is clearly periodic with periods 1
and τ , since it remains unchanged after replacing z by z + 1 or z + τ .

Hence, there are two constants a and b such that

℘(z + 1) = ℘(z) + a and ℘(z + τ) = ℘(z) + b.

It is clear from the definition, however, that ℘ is even, that is, ℘(z) =
℘(−z), since the sum over ω ∈ Λ can be replaced by the sum over −ω ∈
Λ. Therefore ℘(−1/2) = ℘(1/2) and ℘(−τ/2) = ℘(τ/2), and setting z =
−1/2 and z = −τ/2, respectively, in the two expressions above proves
that a = b = 0.

A direct proof of the periodicity of ℘ can be given without differenti-
ation; see Exercise 4.

Properties of ℘

Several remarks are in order. First, we have already observed that ℘ is
even, and therefore ℘′ is odd. Since ℘′ is also periodic with periods 1
and τ , we find that

℘′(1/2) = ℘′(τ/2) = ℘′
(

1 + τ

2

)
= 0.

Indeed, one has, for example,

℘′(1/2) = −℘′(−1/2) = −℘′(−1/2 + 1) = −℘′(1/2).
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Since ℘′ is elliptic and has order 3, the three points 1/2, τ/2, and
(1 + τ)/2 (which are called the half-periods) are the only roots of ℘′ in
the fundamental parallelogram, and they have multiplicity 1. Therefore,
if we define

℘(1/2) = e1, ℘(τ/2) = e2, and ℘

(
1 + τ

2

)
= e3,

we conclude that the equation ℘(z) = e1 has a double root at 1/2. Since
℘ has order 2, there are no other solutions to the equation ℘(z) = e1 in
the fundamental parallelogram. Similarly the equations ℘(z) = e2 and
℘(z) = e3 have only double roots at τ/2 and (1 + τ)/2, respectively. In
particular, the three numbers e1, e2, and e3 are distinct, for otherwise
℘ would have at least four roots in the fundamental parallelogram, con-
tradicting the fact that ℘ has order 2. From these observations we can
prove the following theorem.

Theorem 1.7 The function (℘′)2 is the cubic polynomial in ℘

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3).

Proof. The only roots of F (z) = (℘(z) − e1)(℘(z)− e2)(℘(z) − e3) in
the fundamental parallelogram have multiplicity 2 and are at the points
1/2, τ/2, and (1 + τ)/2. Also, (℘′)2 has double roots at these points.
Moreover, F has poles of order 6 at the lattice points, and so does (℘′)2

(because ℘′ has poles of order 3 there). Consequently (℘′)2/F is holo-
morphic and still doubly-periodic, hence this quotient is constant. To
find the value of this constant we note that for z near 0, one has

℘(z) =
1
z2

+ · · · and ℘′(z) =
−2
z3

+ · · · ,

where the dots indicate terms of higher order. Therefore the constant
is 4, and the theorem is proved.

We next demonstrate the universality of ℘ by showing that every el-
liptic function is a simple combination of ℘ and ℘′.

Theorem 1.8 Every elliptic function f with periods 1 and τ is a rational
function of ℘ and ℘′.

The theorem will be an easy consequence of the following version of it.

Lemma 1.9 Every even elliptic function F with periods 1 and τ is a
rational funcion of ℘.
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Proof. If F has a zero or pole at the origin it must be of even order,
since F is an even function. As a consequence, there exists an integer m
so that F℘m has no zero or pole at the lattice points. We may therefore
assume that F itself has no zero or pole on Λ.

Our immediate goal is to use ℘ to construct a doubly-periodic function
G with precisely the same zeros and poles as F . To achieve this, we recall
that ℘(z) − ℘(a) has a single zero of order 2 if a is a half-period, and two
distinct zeros at a and −a otherwise. We must therefore carefully count
the zeros and poles of F .

If a is a zero of F , then so is −a, since F is even. Moreover, a is
congruent to −a if and only if it is a half-period, in which case the zero
is of even order. Therefore, if the points a1,−a1, . . . , am,−am counted
with multiplicities3 describe all the zeros of F , then

[℘(z) − ℘(a1)] · · · [℘(z) − ℘(am)]

has precisely the same roots as F . A similar argument, where
b1,−b1, . . . , bm,−bm (with multiplicities) describe all the poles of F , then
shows that

G(z) =
[℘(z) − ℘(a1)] · · · [℘(z) − ℘(am)]
[℘(z) − ℘(b1)] · · · [℘(z) − ℘(bm)]

is periodic and has the same zeros and poles as F . Therefore, F/G is
holomorphic and doubly-periodic, hence constant. This concludes the
proof of the lemma.

To prove the theorem, we first recall that ℘ is even while ℘′ odd. We
then write f as a sum of an even and an odd function,

f(z) = feven(z) + fodd(z),

where in fact

feven(z) =
f(z) + f(−z)

2
and fodd(z) =

f(z)− f(−z)
2

.

Then, since fodd/℘
′ is even, it is clear from the lemma applied to feven

and fodd/℘
′ that f is a rational function of ℘ and ℘′.

3If aj is not a half-period, then aj and −aj have the multiplicity of F at these points.
If aj is a half-period, then aj and −aj are congruent and each has multiplicity half of the
multiplicity of F at this point.



2. The modular character of elliptic functions and Eisenstein series 273

2 The modular character of elliptic functions and Eisen-

stein series

We shall now study the modular character of elliptic functions, that is,
their dependence on τ .

Recall the normalization we made at the beginning of the chapter. We
started with two periods ω1 and ω2 linearly that are independent over R,
and we defined τ = ω2/ω1. We could then assume that Im(τ) > 0, and
also that the two periods are 1 and τ . Next, we considered the lattice
generated by 1 and τ and constructed the function ℘, which is elliptic of
order 2 with periods 1 and τ . Since the construction of ℘ depends on τ ,
we could write ℘τ instead. This leads us to change our point of view and
think of ℘τ (z) primarily as a function of τ . This approach yields many
interesting new insights.

Our considerations are guided by the following observations. First,
since 1 and τ generate the periods of ℘τ (z), and 1 and τ + 1 generate
the same periods, we can expect a close relationship between ℘τ (z) and
℘τ+1(z). In fact, it is easy to see that they are identical. Second, since
τ = ω2/ω1, by the normalization imposed at the beginning of Section 1,
we see that −1/τ = −ω1/ω2 (with Im(−1/τ) > 0). This corresponds
essentially to an interchange of the two periods ω1 and ω2, and thus we
can also expect an intimate connection between ℘τ and ℘−1/τ . In fact,
it is easy to verify that ℘−1/τ (z) = τ2℘τ (τz).

So we are led to consider the group of transformations of the upper half-
plane Im(τ) > 0, generated by the two transformations τ 	→ τ + 1 and
τ 	→ −1/τ . This group is called the modular group. On the basis of
what we said, it can be expected that all quantities intrinsically attached
to ℘τ (z) reflect the above transformations. We see this clearly when we
consider the Eisenstein series.

2.1 Eisenstein series

The Eisenstein series of order k is defined by

Ek(τ) =
∑

(n,m)�=(0,0)

1
(n+mτ)k

,

whenever k is an integer ≥ 3 and τ is a complex number with Im(τ) > 0.
If Λ is the lattice generated by 1 and τ , and if we write ω = n+mτ ,
then another expression for the Eisenstein series is

∑
ω∈Λ∗ 1/ωk.

Theorem 2.1 Eisenstein series have the following properties:
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(i) The series Ek(τ) converges if k ≥ 3, and is holomorphic in the
upper half-plane.

(ii) Ek(τ) = 0 if k is odd.

(iii) Ek(τ) satisfies the following transformation relations:

Ek(τ + 1) = Ek(τ) and Ek(τ) = τ−kEk(−1/τ).

The last property is sometimes referred to as the modular character
of the Eisenstein series. We shall return to these and other modular
identities in the next chapter.

Proof. By Lemma 1.5 and the remark after it, the series Ek(τ)
converges absolutely and uniformly in every half-plane Im(τ) ≥ δ > 0,
whenever k ≥ 3; hence Ek(τ) is holomorphic in the upper half-plane
Im(τ) > 0.

By symmetry, replacing n and m by −n and −m, we see that whenever
k is odd the Eisenstein series is identically zero.

Finally, the fact that Ek(τ) is periodic of period 1 is clear from the fact
that n+m(τ + 1) = n+m+mτ , and that we can rearrange the sum by
replacing n+m by n. Also, we have

(n+m(−1/τ))k = τ−k(nτ −m)k,

and again we can rearrange the sum, this time replacing (−m,n) by
(n,m). Conclusion (iii) then follows.

Remark. Because of the second property, some authors define the
Eisenstein series of order k to be

∑
(n,m)�=(0,0) 1/(n+mτ)2k, possibly

also with a constant factor in front.

The connection of the Ek with the Weierstrass ℘ function arises when
we investigate the series expansion of ℘ near 0.

Theorem 2.2 For z near 0, we have

℘(z) =
1
z2

+ 3E4z
2 + 5E6z

4 + · · ·

=
1
z2

+
∞∑

k=1

(2k + 1)E2k+2z
2k.

Proof. From the definition of ℘, if we note that we may replace ω by
−ω without changing the sum, we have

℘(z) =
1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
=

1
z2

+
∑

ω∈Λ∗

[
1

(z − ω)2
− 1
ω2

]
,
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where ω = n+mτ . The identity

1
(1 − w)2

=
∞∑

=0

(�+ 1)w, for |w| < 1,

which follows from differentiating the geometric series, implies that for
all small z

1
(z − ω)2

=
1
ω2

∞∑
=0

(�+ 1)
( z
ω

)

=
1
ω2

+
1
ω2

∞∑
=1

(�+ 1)
( z
ω

)

.

Therefore

℘(z) =
1
z2

+
∑

ω∈Λ∗

∞∑
=1

(�+ 1)
z

ω+2

=
1
z2

+
∞∑

=1

(�+ 1)

(∑
ω∈Λ∗

1
ω+2

)
z

=
1
z2

+
∞∑

=1

(�+ 1)E+2z


=
1
z2

+
∞∑

k=1

(2k + 1)E2k+2z
2k,

where we have used the fact that E+2 = 0 whenever � is odd.

From this theorem, we obtain the following three expansions for z
near 0:

℘′(z)=
−2
z3

+ 6E4z + 20E6z
3 + · · · ,

(℘′(z))2 =
4
z6

− 24E4

z2
− 80E6 + · · · ,

(℘(z))3 =
1
z6

+
9E4

z2
+ 15E6 + · · · .

From these, one sees that the difference (℘′(z))2 − 4(℘(z))3 + 60E4℘(z) +
140E6 is holomorphic near 0, and in fact equal to 0 at the origin. Since
this difference is also doubly periodic, we conclude by Theorem 1.2 that it
is constant, and hence identically 0. This proves the following corollary.

Corollary 2.3 If g2 = 60E4 and g3 = 140E6, then

(℘′)2 = 4℘3 − g2℘− g3.
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Note that this identity is another version of Theorem 1.7, and it al-
lows one to express the symmetric functions of the ej ’s in terms of the
Eisenstein series.

2.2 Eisenstein series and divisor functions

We will describe now the link between Eisenstein series and some number-
theoretic quantities. This relation comes about if we consider the Fourier
coefficients in the Fourier expansion of the periodic function Ek(τ). Equiv-
alently, we can write E(z) = Ek(τ) with z = e2πiτ , and investigate the
Laurent expansion of E as a function of z.

We begin with a lemma.

Lemma 2.4 If k ≥ 2 and Im(τ) > 0, then

∞∑
n=−∞

1
(n+ τ)k

=
(−2πi)k

(k − 1)!

∞∑
=1

�k−1e2πiτ.

Proof. This identity follows from applying the Poisson summation
formula to f(z) = 1/(z + τ)k; see Exercise 7 in Chapter 4.

An alternate proof consists of noting that it first suffices to establish
the formula for k = 2, since the other cases are then obtained by differ-
entiating term by term. To prove this special case, we differentiate the
formula for the cotangent derived in Chapter 5

∞∑
n=−∞

1
n+ τ

= π cotπτ.

This yields

∞∑
n=−∞

1
(n+ τ)2

=
π2

sin2(πτ)
.

Now use Euler’s formula for the sine and the fact that

∞∑
r=1

rwr =
w

(1 − w)2
with w = e2πiτ

to obtain the desired result.

As a consequence of this lemma, we can draw a connection between
the Eisenstein series, the zeta function, and the divisor functions. The
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divisor function σ(r) that arises here is defined as the sum of the �th

powers of the divisors of r, that is,

σ(r) =
∑
d|r

d.

Theorem 2.5 If k ≥ 4 is even, and Im(τ) > 0, then

Ek(τ) = 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∞∑
r=1

σk−1(r)e2πiτr.

Proof. First observe that σk−1(r) ≤ rrk−1 = rk. If Im(τ) = t, then
whenever t ≥ t0 we have |e2πirτ | ≤ e−2πrt0 , and we see that the series in
the theorem is absolutely convergent in any half-plane t ≥ t0, by compar-
ison with

∑∞
r=1 r

ke−2πrt0 . To establish the formula, we use the definition
of Ek, that of ζ, the fact that k is even, and the previous lemma (with τ
replaced by mτ) to get successively

Ek(τ) =
∑

(n,m)�=(0,0)

1
(n+mτ)k

=
∑
n�=0

1
nk

+
∑
m �=0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) +
∑
m �=0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) + 2
∑
m>0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) + 2
∑
m>0

(−2πi)k

(k − 1)!

∞∑
=1

�k−1e2πimτ

= 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∑
m>0

∞∑
=1

�k−1e2πiτm

= 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∞∑
r=1

σk−1(r)e2πiτr.

This proves the desired formula.

Finally, we turn to the forbidden case k = 2. The series we have in
mind

∑
(n,m)�=(0,0) 1/(n+mτ)2 no longer converges absolutely, but we
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seek to give it a meaning anyway. We define

F (τ) =
∑
m

(∑
n

1
(n+mτ)2

)

summed in the indicated order with (n,m) �= (0, 0). The argument given
in the above theorem proves that the double sum converges, and in fact
has the expected expression.

Corollary 2.6 The double sum defining F converges in the indicated
order. We have

F (τ) = 2ζ(2) − 8π2
∞∑

r=1

σ(r)e2πirτ ,

where σ(r) =
∑

d|r d is the sum of the divisors of r.

It can be seen that F (−1/τ)τ−2 does not equal F (τ), and this is the
same as saying that the double series for F gives a different value (F̃ ,
the reverse of F ) when we sum first in m and then in n. It turns out
that nevertheless the forbidden Eisenstein series F (τ) can be used in
a crucial way in the proof of the celebrated theorem about representing
an integer as the sum of four squares. We turn to these matters in the
next chapter.

3 Exercises

1. Suppose that a meromorphic function f has two periods ω1 and ω2, with
ω2/ω1 ∈ R.

(a) Suppose ω2/ω1 is rational, say equal to p/q, where p and q are relatively
prime integers. Prove that as a result the periodicity assumption is equiva-
lent to the assumption that f is periodic with the simple period ω0 = 1

q
ω1.

[Hint: Since p and q are relatively prime, there exist integers m and n such
that mq + np = 1 (Corollary 1.3, Chapter 8, Book I).]

(b) If ω2/ω1 is irrational, then f is constant. To prove this, use the fact that
{m− nτ} is dense in R whenever τ is irrational and m,n range over the
integers.

2. Suppose that a1, . . . , ar and b1, . . . , br are the zeros and poles, respectively, in
the fundamental parallelogram of an elliptic function f . Show that

a1 + · · · + ar − b1 − · · · − br = nω1 +mω2
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for some integers n and m.

[Hint: If the boundary of the parallelogram contains no zeros or poles, simply inte-
grate zf ′(z)/f(z) over that boundary, and observe that the integral of f ′(z)/f(z)
over a side is an integer multiple of 2πi. If there are zeros or poles on the side
of the parallelogram, translate it by a small amount to reduce the problem to the
first case.]

3. In contrast with the result in Lemma 1.5, prove that the series

∑
n+mτ∈Λ∗

1

|n+mτ |2 where τ ∈ H

does not converge. In fact, show that∑
1≤n2+m2≤R2

1/(n2 +m2) = 2π logR+O(1) as R → ∞.

4. By rearranging the series

1

z2
+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
,

show directly, without differentiation, that ℘(z + ω) = ℘(z) whenever ω ∈ Λ.

[Hint: For R sufficiently large, note that ℘(z) = ℘R(z) +O(1/R), where
℘R(z) = z−2 +

∑
0<|ω|<R((z + ω)−2 − ω−2). Next, observe that both

℘R(z + 1) − ℘R(z) and ℘R(z + τ ) − ℘R(z) areO(
∑

R−c<|ω|<R+c |ω|−2) = O(1/R).]

5. Let σ(z) be the canonical product

σ(z) = z

∞∏
j=1

E2(z/τj),

where τj is an enumeration of the periods {n+mτ} with (n,m) 
= (0, 0), and

E2(z) = (1 − z)ez+z2/2.

(a) Show that σ(z) is an entire function of order 2 that has simple zeros at all
the periods n+mτ , and vanishes nowhere else.

(b) Show that

σ′(z)
σ(z)

=
1

z
+

∑
(n,m) 	=(0,0)

[
1

z − n−mτ
+

1

n+mτ
+

z

(n+mτ )2

]
,

and that this series converges whenever z is not a lattice point.
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(c) Let L(z) = −σ′(z)/σ(z). Then

L′(z) =
(σ′(z))2 − σ(z)σ′′(z)

(σ(z))2
= ℘(z).

6. Prove that ℘′′ is a quadratic polynomial in ℘.

7. Setting τ = 1/2 in the expression

∞∑
m=−∞

1

(m+ τ )2
=

π2

sin2(πτ )
,

deduce that

∑
m≥1, m odd

1

m2
=
π2

8
and

∑
m≥1

1

m2
=
π2

6
= ζ(2).

Similarly, using
∑

1/(m+ τ )4 deduce that

∑
m≥1, m odd

1

m4
=
π4

96
and

∑
m≥1

1

m4
=
π4

90
= ζ(4).

These results were already obtained using Fourier series in the exercises at the
end of Chapters 2 and 3 in Book I.

8. Let

E4(τ ) =
∑

(n,m) 	=(0,0)

1

(n+mτ )4

be the Eisenstein series of order 4.

(a) Show that E4(τ ) → π4/45 as Im(τ ) → ∞.

(b) More precisely,∣∣∣∣E4(τ ) − π4

45

∣∣∣∣ ≤ ce−2πt if τ = x+ it and t ≥ 1.

(c) Deduce that∣∣∣∣E4(τ ) − τ−4 π
4

45

∣∣∣∣ ≤ ct−4e−2π/t if τ = it and 0 < t ≤ 1.



4. Problems 281

4 Problems

1. Besides the approach in Section 1.2, there are several alternate ways of deal-
ing with the sum

∑
1/(z + ω)2, where ω = n+mτ . For example, one may sum

either (a) circularly, (b) first in n then in m, (c) or first in m then in n.

(a) Prove that if z /∈ Λ, then

lim
R→∞

∑
n2+m2≤R2

1

(z + n+mτ )2
= S1(z)

exists and S1(z) = ℘(z) + c1.

(b) Similarly,

∑
m

(∑
n

1

(z + n+mτ )2

)
= S2(z)

exists and S2(z) = ℘(z) + c2, where c2 = F (τ ), and F is the forbidden Eisen-
stein series.

(c) Also

∑
n

(∑
m

1

(z + n+mτ )2

)
= S3(z)

exists with S3(z) = ℘(z) + c3, and c3 = F̃ (τ ), the reverse of F .

[Hint: To prove (a), it suffices to show that limR→∞,
∑

1≤n2+m2≤R2

1/(n+mτ )2 = c1

exists. This is proved by a comparision with
∫
1≤x2+y2≤R2

dx
(x+yτ)2

= I(R). It can

be shown that I(R) = 0, which follows because (x+ yτ )−2 = −(∂/∂x)(x+ yτ )−1.]

2. Show that

℘(z) = c+ π2
∞∑

m=−∞

1

sin2((z +mτ )π)

where c is an appropriate constant. In fact, by part (b) of the previous problem
c = −F (τ ).

3.∗ Suppose Ω is a simply connected domain that excludes the three roots of the
polynomial 4z3 − g2z − g3. For ω0 ∈ Ω and ω0 fixed, define the function I on Ω by

I(ω) =

∫ ω

ω0

dz√
4z3 − g2z − g3

ω ∈ Ω.

Then the function I has an inverse given by ℘(z + α) for some constant α; that is,

I(℘(z + α)) = z
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for appropriate α.

[Hint: Prove that (I(℘(z + α)))′ = ±1, and use the fact that ℘ is even.]

4.∗ Suppose τ is purely imaginary, say τ = it with t > 0. Consider the division
of the complex plane into congruent rectangles obtained by considering the lines
x = n/2, y = tm/2 as n and m range over the integers. (An example is the rect-
angle whose vertices are 0, 1/2, 1/2 + τ/2, and τ/2.)

(a) Show that ℘ is real-valued on all these lines, and hence on the boundaries
of all these rectangles.

(b) Prove that ℘ maps the interior of each rectangle conformally to the upper
(or lower) half-plane.



10 Applications of Theta
Functions

The problem of the representation of an integer n as
the sum of a given number k of integral squares is one
of the most celebrated in the theory of numbers. Its
history may be traced back to Diophantus, but begins
effectively with Girard’s (or Fermat’s) theorem that a
prime 4m + 1 is the sum of two squares. Almost every
arithmetician of note since Fermat has contributed to
the solution of the problem, and it has its puzzles for
us still.

G. H. Hardy, 1940

This chapter is devoted to a closer look at the theory of theta functions
and some of its applications to combinatorics and number theory.

The theta function is given by the series

Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz,

which converges for all z ∈ C, and τ in the upper half-plane.
A remarkable feature of the theta function is its dual nature. When

viewed as a function of z, we see it in the arena of elliptic functions, since
Θ is periodic with period 1 and “quasi-period” τ . When considered as
a function of τ , Θ reveals its modular nature and close connection with
the partition function and the problem of representation of integers as
sums of squares.

The two main tools allowing us to exploit these links are the triple-
product for Θ and its transformation law. Once we have proved these
theorems, we give a brief introduction to the connection with partitions,
and then pass to proofs of the celebrated theorems about representation
of integers as sums of two or four squares.
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1 Product formula for the Jacobi theta function

In its most elaborate form, Jacobi’s theta function is defined for z ∈ C

and τ ∈ H by

(1) Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz.

Two significant special cases (or variants) are θ(τ) and ϑ(t), which are
defined by

θ(τ)=
∞∑

n=−∞
eπin2τ , τ ∈ H,

ϑ(t)=
∞∑

n=−∞
e−πn2t, t > 0.

In fact, the relation between these various functions is given by
θ(τ) = Θ(0|τ) and ϑ(t) = θ(it), with of course, t > 0.

We have already encountered these functions several times. For exam-
ple, in the study of the heat diffusion equation for the circle, in Chapter 4
of Book I, we found that the heat kernel was given by

Ht(x) =
∞∑

n=−∞
e−4π2n2te2πinx,

and therefore Ht(x) = Θ(x|4πit).
Another instance was the occurence of ϑ in the study of the zeta func-

tion. In fact, we proved in Chapter 6 that the functional equation of ϑ
implied that of ζ, which then led to the analytic continuation of the zeta
function.

We begin our closer look at Θ as a function of z, with τ fixed, by
recording its basic structural properties, which to a large extent charac-
terize it.

Proposition 1.1 The function Θ satisfies the following properties:

(i) Θ is entire in z ∈ C and holomorphic in τ ∈ H.

(ii) Θ(z + 1|τ) = Θ(z|τ).

(iii) Θ(z + τ |τ) = Θ(z|τ)e−πiτe−2πiz.

(iv) Θ(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z.
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Proof. Suppose that Im(τ) = t ≥ t0 > 0 and z = x+ iy belongs to a
bounded set in C, say |z| ≤M . Then, the series defining Θ is absolutely
and uniformly convergent, since

∞∑
n=−∞

|eπin2τe2πinz| ≤ C
∑
n≥0

e−πn2t0e2πnM <∞.

Therefore, for each fixed τ ∈ H the function Θ(·|τ) is entire, and for each
fixed z ∈ C the function Θ(z|·) is holomorphic in the upper half-plane.

Since the exponential e2πinz is periodic of period 1, property (ii) is
immediate from the definition of Θ.

To show the third property we may complete the squares in the ex-
pression for Θ(z + τ |τ). In detail, we have

Θ(z + τ |τ) =
∞∑

n=−∞
eπin2τe2πin(z+τ)

=
∞∑

n=−∞
eπi(n2+2n)τe2πinz

=
∞∑

n=−∞
eπi(n+1)2τe−πiτe2πinz

=
∞∑

n=−∞
eπi(n+1)2τe−πiτe2πi(n+1)ze−2πiz

= Θ(z|τ)e−πiτe−2πiz.

Thus we see that Θ(z|τ), as a function of z, is periodic with period 1 and
“quasi-periodic” with period τ .

To establish the last property it suffices, by what was just shown, to
prove that Θ(1/2 + τ/2|τ) = 0. Again, we use the interplay between n
and n2 to get

Θ(1/2 + τ/2|τ) =
∞∑

n=−∞
eπin2τe2πin(1/2+τ/2)

=
∞∑

n=−∞
(−1)neπi(n2+n)τ .

To see that this last sum is identically zero, it suffices to match n ≥ 0
with −n− 1, and to observe that they have opposite parity, and that
(−n− 1)2 + (−n− 1) = n2 + n. This completes the proof of the propo-
sition.
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We consider next a product Π(z|τ) that enjoys the same structural
properties as Θ(z|τ) as a function of z. This product is defined for z ∈ C

and τ ∈ H by

Π(z|τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

where we have used the notation that is standard in the subject, namely
q = eπiτ . The function Π(z|τ) is sometimes referred to as the triple-
product.

Proposition 1.2 The function Π(z|τ) satisfies the following properties:

(i) Π(z, τ) is entire in z ∈ C and holomorphic for τ ∈ H.

(ii) Π(z + 1|τ) = Π(z|τ).

(iii) Π(z + τ |τ) = Π(z|τ)e−πiτe−2πiz.

(iv) Π(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z. More-
over, these points are simple zeros of Π(·|τ), and Π(·|τ) has no
other zeros.

Proof. If Im(τ) = t ≥ t0 > 0 and z = x+ iy, then |q| ≤ e−πt0 < 1 and

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz) = 1 +O
(
|q|2n−1e2π|z|) .

Since the series
∑

|q|2n−1 converges, the results for infinite products in
Chapter 5 guarantee that Π(z|τ) defines an entire function of z with
τ ∈ H fixed, and a holomorphic function for τ ∈ H with z ∈ C fixed.

Also, it is clear from the definition that Π(z|τ) is periodic of period 1
in the z variable.

To prove the third property, we first observe that since q2 = e2πiτ we
have

Π(z + τ |τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πi(z+τ))(1 + q2n−1e−2πi(z+τ))

=
∞∏

n=1

(1 − q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz).

Comparing this last product with Π(z|τ), and isolating the factors that
are either missing or extra leads to

Π(z + τ |τ) = Π(z|τ)
(

1 + q−1e−2πiz

1 + qe2πiz

)
.



1. Product formula for the Jacobi theta function 287

Hence (iii) follows because (1 + x)/(1 + x−1) = x, whenever x �= −1.
Finally, to find the zeros of Π(z|τ) we recall that a product that con-

verges vanishes only if at least one of its factors is zero. Clearly, the factor
(1 − qn) never vanishes since |q| < 1. The second factor
(1 + q2n−1e2πiz) vanishes when q2n−1e2πiz = −1 = eπi. Since q = eπiτ ,
we then have1

(2n− 1)τ + 2z = 1 (mod 2).

Hence,

z = 1/2 + τ/2 − nτ (mod 1),

and this takes care of the zeros of the type 1/2 + τ/2 − nτ +m with
n ≥ 1 and m ∈ Z. Similarly, the third factor vanishes if

(2n− 1)τ − 2z = 1 (mod 2)

which implies that

z = −1/2 − τ/2 + nτ (mod 1)

= 1/2 + τ/2 + n′τ (mod 1),

where n′ ≥ 0. This exhausts the zeros of Π(·|τ). Finally, these zeros are
simple, since the function ew − 1 vanishes at the origin to order 1 (a fact
obvious from a power series expansion or a simple differentiation).

The importance of the product Π comes from the following theorem,
called the product formula for the theta function. The fact that Θ(z|τ)
and Π(z|τ) satisfy similar properties hints at a close connection between
the two. This is indeed the case.

Theorem 1.3 (Product formula) For all z ∈ C and τ ∈ H we have
the identity Θ(z|τ) = Π(z|τ).

Proof. Fix τ ∈ H. We claim first that there exists a constant c(τ)
such that

(2) Θ(z|τ) = c(τ)Π(z|τ).

In fact, consider the quotient F (z) = Θ(z|τ)/Π(z|τ), and note that by the
previous two propositions, the function F is entire and doubly periodic
with periods 1 and τ . This implies that F is constant as claimed.

1We use the standard short-hand, a = b (mod c), to mean that a− b is an integral
multiple of c.
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We must now prove that c(τ) = 1 for all τ , and the main point is to
establish that c(τ) = c(4τ). If we put z = 1/2 in (2), so that e2iπz =
e−2iπz = −1, we obtain

∞∑
n=−∞

(−1)nqn2
= c(τ)

∞∏
n=1

(1 − q2n)(1 − q2n−1)(1 − q2n−1)

= c(τ)
∞∏

n=1

[
(1 − q2n−1)(1 − q2n)

]
(1 − q2n−1)

= c(τ)
∞∏

n=1

(1 − qn)(1 − q2n−1).

Hence

(3) c(τ) =

∑∞
n=−∞(−1)nqn2∏∞

n=1(1 − qn)(1 − q2n−1)
.

Next, we put z = 1/4 in (2), so that e2iπz = i. On the one hand, we have

Θ(1/4|τ) =
∞∑

n=−∞
qn2

in,

and due to the fact that 1/i = −i, only the terms corresponding to n =
even = 2m are not cancelled; thus

Θ(1/4|τ) =
∞∑

m=−∞
q4m2

(−1)m.

On the other hand,

Π(1/4|τ) =
∞∏

m=1

(1 − q2m)(1 + iq2m−1)(1 − iq2m−1)

=
∞∏

m=1

(1 − q2m)(1 + q4m−2)

=
∞∏

n=1

(1 − q4n)(1 − q8n−4),

where the last line is obtained by considering separately the two cases
2m = 4n− 4 and 2m = 4n− 2 in the first factor. Hence

(4) c(τ) =

∑∞
n=−∞(−1)nq4n2∏∞

n=1(1 − q4n)(1 − q8n−4)
,
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and combining (3) and (4) establishes our claim that c(τ) = c(4τ). Suc-
cessive applications of this identity give c(τ) = c(4kτ), and since q4

k

=
eiπ4kτ → 0 as k → ∞, we conclude from (2) that c(τ) = 1. This proves
the theorem.

The product formula for the function Θ specializes to its variant θ(τ) =
Θ(0|τ), and this provides a proof that θ is non-vanishing in the upper
half-plane.

Corollary 1.4 If Im(τ) > 0 and q = eπiτ , then

θ(τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1)2.

Thus θ(τ) �= 0 for τ ∈ H.

The next corollary shows that the properties of the function Θ now
yield the construction of an elliptic function (which is in fact closely
related to the Weierstrass ℘ function).

Corollary 1.5 For each fixed τ ∈ H, the quotient

(log Θ(z|τ))′′ =
Θ(z|τ)Θ′′(z|τ) − (Θ′(z|τ))2

Θ(z|τ)2

is an elliptic function of order 2 with periods 1 and τ , and with a double
pole at z = 1/2 + τ/2.

In the above, the primes ′ denote differentiation with respect to the z
variable.

Proof. Let F (z) = (log Θ(z|τ))′ = Θ(z|τ)′/Θ(z|τ). Differentiating
the identities (ii) and (iii) of Proposition 1.1 gives F (z + 1) = F (z),
F (z + τ) = F (z) − 2πi, and differentiating again shows that F ′(z) is dou-
bly periodic. Since Θ(z|τ) vanishes only at z = 1/2 + τ/2 in the funda-
mental parallelogram, the function F (z) has only a single pole, and thus
F ′(z) has only a double pole there.

The precise connection between (log Θ(z|τ))′′ and ℘τ (z) is stated in
Exercise 1.

For an analogy between Θ and the Weierstrass σ function, see Exer-
cise 5 of the previous chapter.

1.1 Further transformation laws

We now come to the study of the transformation relations in the τ -
variable, that is, to the modular character of Θ.
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Recall that in the previous chapter, the modular character of the
Weierstrass ℘ function and Eisenstein series Ek was reflected by the
two transformations

τ 	→ τ + 1 and τ 	→ −1/τ,

which preserve the upper half-plane. In what follows, we shall denote
these two transformations by T1 and S, respectively.

When looking at the Θ function, however, it will be natural to consider
instead the transformations

T2 : τ 	→ τ + 2 and S : τ 	→ −1/τ,

since Θ(z|τ + 2) = Θ(z|τ), but Θ(z|τ + 1) �= Θ(z|τ).
Our first task is to study the transformation of Θ(z|τ) under the map-

ping τ 	→ −1/τ .

Theorem 1.6 If τ ∈ H, then

(5) Θ(z| − 1/τ) =
√
τ

i
eπiτz2

Θ(zτ |τ) for all z ∈ C.

Here
√
τ/i denotes the branch of the square root defined on the upper

half-plane, that is positive when τ = it, t > 0.

Proof. It suffices to prove this formula for z = x real and τ = it
with t > 0, since for each fixed x ∈ R, the two sides of equation (5) are
holomorphic functions in the upper half-plane which then agree on the
positive imaginary axis, and hence must be equal everywhere. Also, for
a fixed τ ∈ H the two sides define holomorphic functions in z that agree
on the real axis, and hence must be equal everywhere.

With x real and τ = it the formula becomes
∞∑

n=−∞
e−πn2/te2πinx = t1/2e−πtx2

∞∑
n=−∞

e−πn2te−2πnxt.

Replacing x by a, we find that we must prove

∞∑
n=−∞

e−πt(n+a)2 =
∞∑

n=−∞
t−1/2e−πn2/te2πina.

However, this is precisely equation (3) in Chapter 4, which was derived
from the Poisson summation formula.

In particular, by setting z = 0 in the theorem, we find the following.
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Corollary 1.7 If Im(τ) > 0, then θ(−1/τ) =
√
τ/i θ(τ).

Note that if τ = it, then θ(τ) = ϑ(t), and the above relation is precisely
the functional equation for ϑ which appeared in Chapter 4.

The transformation law θ(−1/τ) = (τ/i)1/2θ(τ) gives us very precise
information about the behavior when τ → 0. The next corollary will be
used later, when we need to analyze the behavior of θ(τ) as τ → 1.

Corollary 1.8 If τ ∈ H, then

θ(1 − 1/τ) =

√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ

=
√
τ

i

(
2eπiτ/4 + · · ·

)
.

The second identity means that θ(1 − 1/τ) ∼
√
τ/i2eiπτ/4 as

Im(τ) → ∞.

Proof. First, we note that n and n2 have the same parity, so

θ(1 + τ) =
∞∑

n=−∞
(−1)neiπn2τ = Θ(1/2|τ),

hence θ(1 − 1/τ) = Θ(1/2| − 1/τ). Next, we use Theorem 1.6 with z =
1/2, and the result is

θ(1 − 1/τ) =
√
τ

i
eπiτ/4Θ(τ/2|τ)

=
√
τ

i
eπiτ/4

∞∑
n=−∞

eπin2τeπinτ

=
√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ .

The terms corresponding to n = 0 and n = −1 contribute 2eπiτ/4, which
has absolute value 2e−πt/4 where τ = σ + it. Finally, the sum of the
other terms n �= 0,−1 is of order

O

( ∞∑
k=1

e−(k+1/2)2πt

)
= O

(
e−9πt/4

)
.
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Our final corollary of the transformation law pertains to the Dedekind
eta function, which is defined for Im(τ) > 0 by

η(τ) = e
πiτ
12

∞∏
n=1

(1 − e2πinτ).

The functional equation for η given below will be relevant to our discus-
sion of the four-square theorem, and in the theory of partitions.

Proposition 1.9 If Im(τ) > 0, then η(−1/τ) =
√
τ/i η(τ).

This identity is deduced by differentiating the relation in Theorem 1.6
and evaluating it at z0 = 1/2 + τ/2. The details are as follows.

Proof. From the product formula for the theta function, we may write
with q = eπiτ ,

Θ(z|τ) = (1 + qe−2πiz)
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n+1e−2πiz),

and since the first factor vanishes at z0 = 1/2 + τ/2, we see that

Θ′(z0|τ) = 2πiH(τ), where H(τ) =
∏∞

n=1(1 − e2πinτ )3.

Next, we observe that with −1/τ replaced by τ in (5), we obtain

Θ(z|τ) =
√
i/τe−πiz2/τΘ(−z/τ | − 1/τ).

If we differentiate this expression and then evaluate it at the point z0 =
1/2 + τ/2, we find

2πiH(τ) =
√
i/τe−

πi
4τ e−

πi
2 e−

πiτ
4

(
−2πi
τ

)
H(−1/τ).

Hence

e
πiτ
4 H(τ) =

(
i

τ

)3/2

e−
πi
4τ H(−1/τ).

We note that when τ = it, with t > 0, the function η(τ) is positive, and
thus taking the cube root of the above gives η(τ) =

√
i/τ η(−1/τ); there-

fore this identity holds for all τ ∈ H by analytic continuation.

A connection between the function η and the theory of elliptic func-
tions is given in Problem 5.
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2 Generating functions

Given a sequence {Fn}∞n=0, which may arise either combinatorially, re-
cursively, or in terms of some number-theoretic law, an important tool
in its study is the passage to its generating function, defined by

F (x) =
∞∑

n=0

Fnx
n.

Often times, the defining properties of the sequence {Fn} imply interest-
ing algebraic or analytic properties of the function F (x), and exploiting
these can eventually lead us back to new insights about the sequence
{Fn}. A very simple-minded example is given by the Fibonacci sequence.
(See Exercise 2). Here we want to study less elementary examples of this
idea, related to the Θ function.

We shall first discuss very briefly the theory of partitions.
The partition function is defined as follows: if n is a positive integer,

we let p(n) denote the numbers of ways n can be written as a sum of
positive integers. For instance, p(1) = 1, and p(2) = 2 since 2 = 2 + 0 =
1 + 1. Also, p(3) = 3 since 3 = 3 + 0 = 2 + 1 = 1 + 1 + 1. We set p(0) =
1 and collect some further values of p(n) in the following table.

n 0 1 2 3 4 5 6 7 8 · · · 12
p(n) 1 1 2 3 5 7 11 15 22 · · · 77

The first theorem is Euler’s identity for the generating function of the
partition sequence {p(n)}, which is reminiscent of the product formula
for the zeta function.

Theorem 2.1 If |x| < 1, then
∞∑

n=0

p(n)xn =
∞∏

k=1

1
1 − xk

.

Formally, we can write each fraction as

1
1 − xk

=
∞∑

m=0

xkm,

and multiply these out together to obtain p(n) as the coefficient of xn.
Indeed, when we group together equal integers in a partition of n, this
partition can be written as

n = m1k1 + · · · +mrkr,
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where k1, . . . , kr are distinct positive integers. This partition corresponds
to the term

(xk1)m1 · · · (xkr)mr

that arises in the product.
The justification of this formal argument proceeds as in the proof of

the product formula for the zeta function (Section 1, Chapter 7); this is
based on the convergence of the product

∏
1/(1 − xk). This convergence

in turn follows from the fact that for each fixed |x| < 1 one has

1
1 − xk

= 1 +O(xk).

A similar argument shows that the product
∏

1/(1 − x2n−1) is equal to
the generating function for po(n), the number of partitions of n into odd
parts. Also,

∏
(1 + xn) is the generating function for pu(n), the number

of partitions of n into unequal parts. Remarkably, po(n) = pu(n) for all
n, and this translates into the identity

∞∏
n=1

(
1

1 − x2n−1

)
=

∞∏
n=1

(1 + xn).

To prove this note that (1 + xn)(1 − xn) = 1 − x2n, and therefore

∞∏
n=1

(1 + xn)
∞∏

n=1

(1 − xn) =
∞∏

n=1

(1 − x2n).

Moreover, taking into account the parity of integers, we have
∞∏

n=1

(1 − x2n)
∞∏

n=1

(1 − x2n−1) =
∞∏

n=1

(1 − xn),

which combined with the above proves the desired identity.

The proposition that follows is deeper, and in fact involves the Θ func-
tion directly. Let pe,u(n) denote the number of partitions of n into an
even number of unequal parts, and po,u(n) the number of partitions of n
into an odd number of unequal parts. Then, Euler proved that, unless n is
a pentagonal number, one has pe,u(n) = po,u(n). By definition, pentag-
onal numbers2 are integers n of the form k(3k + 1)/2, with k ∈ Z. For

2The traditional definition is as follows. Integers of the form n = k(k − 1)/2, k ∈ Z,
are “triangular numbers”; those of the form n = k2 are “squares”; and those of the form
k(3k + 1)/2 are “pentagonal numbers.” In general, numbers of the form (k/2)((� − 2)k +
�− 4) are associated with an �-sided polygon.
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example, the first few pentagonal numbers are 1, 2, 5, 7, 12, 15, 22, 26, . . ..
In fact, if n is pentagonal, then

pe,u(n) − po,u(n) = (−1)k, if n = k(3k + 1)/2.

To prove this result, we first observe that

∞∏
n=1

(1 − xn) =
∞∑

n=1

[pe,u(n) − po,u(n)]xn.

This follows since multiplying the terms in the product, we obtain terms
of the form (−1)rxn1+···+nr where the integers n1, . . . , nr are distinct.
Hence in the coefficient of xn, each partition n1 + · · · + nr of n into an
even number of unequal parts contributes for +1 (r is even), and each
partition into an odd number of unequal parts contributes −1 (r is odd).
This gives precisely the coefficient pe,u(n) − po,u(n).

With the above identity, we see that Euler’s theorem is a consequence
of the following proposition.

Proposition 2.2
∞∏

n=1

(1 − xn) =
∞∑

k=−∞
(−1)kx

k(3k+1)
2 .

Proof. If we set x = e2πiu, then we can write

∞∏
n=1

(1 − xn) =
∞∏

n=1

(1 − e2πinu)

in terms of the triple product

∞∏
n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)

by letting q = e3πiu and z = 1/2 + u/2. This is because

∞∏
n=1

(1 − e2πi3nu)(1 − e2πi(3n−1)u)(1 − e2πi(3n−2)u) =
∞∏

n=1

(1 − e2πinu).

By Theorem 1.3 the product equals

∞∑
n=−∞

e3πin2u(−1)ne2πinu/2 =
∞∑

n=−∞
(−1)neπin(3n+1)u
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=
∞∑

n=−∞
(−1)nxn(3n+1)/2,

which was to be proved.

We make a final comment about the partition function p(n). The
nature of its growth as n→ ∞ can be analyzed in terms of the behavior
of 1/

∏∞
n=1(1 − x)n as |x| → 1. In fact, by elementary considerations, we

can get a rough order of growth of p(n) from the growth of the generating
function as x→ 1; see Exercises 5 and 6. A more refined analysis requires
the transformation properties of the generating function which goes back
to the corresponding Proposition 1.9 about η. This leads to a very good
asymptotic formula for p(n). It may be found in Appendix A.

3 The theorems about sums of squares

The ancient Greeks were fascinated by triples of integers (a, b, c) that
occurred as sides of right triangles. These are the “Pythagorean triples,”
which satisfy a2 + b2 = c2. According to Diophantus of Alexandria
(ca. 250 AD), if c is an integer of the above kind, and a and b have
no common factors (a case to which one may easily reduce), then c is the
sum of two squares, that is, c = m2 + n2 with m,n ∈ Z; and conversely,
any such c arises as the hypotenuse of a triangle whose sides are given by
a Pythagorean triple (a, b, c). (See Exercise 8.) Therefore, it is natural
to ask the following question: which integers can be written as the sum
of two squares? It is easy to see that no number of the form 4k + 3 can
be so written, but to determine which integers can be expressed in this
way is not obvious.

Let us pose the question in a more quantitative form. We define r2(n)
to be the number of ways n can be written as the sum of two squares,
counting obvious repetitions; that is, r2(n) is the number of pairs (x, y),
x, y ∈ Z, so that

n = x2 + y2.

For example, r2(3) = 0, but r2(5) = 8 because 5 = (±2)2 + (±1)2, and
also 5 = (±1)2 + (±2)2. Hence, our first problem can be posed as follows:

Sum of two squares: Which integers can be written as a
sum of two squares? More precisely, can one determine an
expression for r2(n)?

Next, since not every positive integer can be expressed as the sum of
two squares, we may ask if three squares, or possibly four squares suffice.
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However, the fact is that there are infinitely many integers that cannot
be written as the sum of three squares, since it is easy to check that no
integer of the form 8k + 7 can be so written. So we turn to the question
of four squares and define, in analogy with r2(n), the function r4(n) to be
the number of ways of expressing n as a sum of four squares. Therefore,
a second problem that arises is:

Sum of four squares: Can every positive integer be written
as a sum of four squares? More precisely, determine a formula
for r4(n).

It turns out that the problems of two squares and four squares, which
go back to the third century, were not resolved until about 1500 years
later, and their full solution was first given by the use of Jacobi’s theory
of theta functions!

3.1 The two-squares theorem

The problem of representing an integer as the sum of two squares, while
obviously additive in nature, has a nice multiplicative aspect: if n and
m are two integers that can be written as the sum of two squares, then
so can their product nm. Indeed, suppose n = a2 + b2, m = c2 + d2, and
consider the complex number

x+ iy = (a+ ib)(c+ id).

Clearly, x and y are integers since a, b, c, d ∈ Z, and by taking absolute
values on both sides we see that

x2 + y2 = (a2 + b2)(c2 + d2),

and it follows that nm = x2 + y2.
For these reasons the divisibility properties of n play a crucial role in

determining r2(n). To state the basic result we define two new divisor
functions: we let d1(n) denote the number of divisors of n of the form
4k + 1, and d3(n) the number of divisors of n of the form 4k + 3. The
main result of this section provides a complete answer to the two-squares
problem:

Theorem 3.1 If n ≥ 1, then r2(n) = 4(d1(n) − d3(n)).

A direct consequence of the above formula for r2(n) may be stated as
follows. If n = pa1

1 · · · par
r is the prime factorization of n where p1, . . . , pr

are distinct, then:
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The positive integer n can be represented as the sum of two
squares if and only if every prime pj of the form 4k + 3 that
occurs in the factorization of n has an even exponent aj.

The proof of this deduction is outlined in Exercise 9.

To prove the theorem, we first establish a crucial relationship that
identifies the generating function of the sequence {r2(n)}∞n=1 with the
square of the θ function, namely

(6) θ(τ)2 =
∞∑

n=0

r2(n)qn,

whenever q = eπiτ with τ ∈ H. The proof of this identity relies simply on
the definition of r2 and θ. Indeed, if we first recall that θ(τ) =

∑∞
−∞ qn2

,
then we obtain

θ(τ)2 =

( ∞∑
n1=−∞

qn2
1

)( ∞∑
n2=−∞

qn2
2

)
=

∑
(n1,n2)∈Z×Z

qn2
1+n2

2

=
∞∑

n=0

r2(n)qn,

since r2(n) counts the number of pairs (n1, n2) with n2
1 + n2

2 = n.

Proposition 3.2 The identity r2(n) = 4(d1(n) − d3(n)), n ≥ 1, is equiv-
alent to the identities

(7) θ(τ)2 = 2
∞∑

n=−∞

1
qn + q−n

= 1 + 4
∞∑

n=1

qn

1 + q2n
,

whenever q = eπiτ and τ ∈ H.

Proof. We note first that both series converge absolutely since |q| < 1,
and the first equals the second, because 1/(qn + q−n) = q|n|/(1 + q2|n|).

Since (1 + q2n)−1 = (1 − q2n)/(1 − q4n), the right-hand side of (7) equals

1 + 4
∞∑

n=1

(
qn

1 − q4n
− q3n

1 − q4n

)
.
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However, since 1/(1 − q4n) =
∑∞

m=0 q
4nm, we have

∞∑
n=1

qn

1 − q4n
=

∞∑
n=1

∞∑
m=0

qn(4m+1) =
∞∑

k=1

d1(k)qk,

because d1(k) counts the number of divisors of k that are of the form
4m+ 1. Observe that the series

∑
d1(k)qk converges since d1(k) ≤ k.

A similar argument shows that

∞∑
n=1

q3n

1 − q4n
=

∞∑
k=1

d3(k)qk,

and the proof of the proposition is complete.

In effect, we see that the identity (6) links the original problem in
arithmetic with the problem in complex analysis of establishing the re-
lation (7).

We shall now find it convenient to use C(τ) to denote3

(8) C(τ) = 2
∞∑

n=−∞

1
qn + q−n

=
∞∑

n=−∞

1
cos(nπτ)

,

where q = eπiτ and τ ∈ H. Our work then becomes to prove the identity
θ(τ)2 = C(τ).

What is truly remarkable are the different yet parallel ways that the
functions θ and C arise. The genesis of the function θ may be thought
to be the heat diffusion equation on the real line; the corresponding
heat kernel is given in terms of the Gaussian e−πx2

which is its own
Fourier transform; and finally the transformation rule for θ results from
the Poisson summation formula.

The parallel with C is that it arises from another differential equation:
the steady-state heat equation in a strip; there, the corresponding kernel
is 1/ coshπx (Section 1.3, Chapter 8), which again is its own Fourier
transform (Example 3, Chapter 3). The transformation rule for C results,
once again, from the Poisson summation formula.

To prove the identity θ2 = C we will first show that these two functions
satisfy the same structural properties. For θ2 we had the transformation
law θ(τ)2 = (i/τ)θ(−1/τ)2 (Corollary 1.7).

3We denote the function by C because we are summing a series of cosines.
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An identical transformation law holds for C(τ)! Indeed, if we set a = 0
in the relation (5) of Chapter 4 we obtain

∞∑
n=−∞

1
cosh(πnt)

=
1
t

∞∑
n=−∞

1
cosh(πn/t)

.

This is precisely the identity

C(τ) = (i/τ) C(−1/τ)

for τ = it, t > 0, which therefore also holds for all τ ∈ H by analytic
continuation.

It is also obvious from their definitions that both θ(τ)2 and C(τ) tend
to 1 as Im(τ) → ∞. The last property we want to examine is the behavior
of both functions at the “cusp” τ = 1.4

For θ2 we shall invoke Corollary 1.8 to see that θ(1 − 1/τ)2 ∼ 4(τ/i)eπiτ/2

as Im(τ) → ∞.
For C we can do the same, again using the Poisson summation formula.

In fact, if we set a = 1/2 in equation (5), Chapter 4, we find

∞∑
n=−∞

(−1)n

cosh(πn/t)
= t

∞∑
n=−∞

1
cosh(π(n+ 1/2)t)

.

Therefore, by analytic continuation we deduce that

C(1 − 1/τ) =
(τ
i

) ∞∑
n=−∞

1
cos(π(n+ 1/2)τ)

.

The main terms of this sum are those for n = −1 and n = 0. This easily
gives

C(1 − 1/τ) = 4
(τ
i

)
eπiτ/2 +O

(
|τ |e−3πt/2

)
, as t→ ∞,

and where τ = σ + it. We summarize our conclusions in a proposition.

Proposition 3.3 The function C(τ) =
∑

1/ cos(πnτ), defined in the up-
per half-plane, satisfies

(i) C(τ + 2) = C(τ).

(ii) C(τ) = (i/τ)C(−1/τ).

4Why we refer to the point τ = 1 as a cusp, and the reason for its importance, will
become clear later on.
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(iii) C(τ) → 1 as Im(τ) → ∞.

(iv) C(1 − 1/τ) ∼ 4(τ/i)eπiτ/2 as Im(τ) → ∞.

Moreover, θ(τ)2 satisfies the same properties.

With this proposition, we prove the identity of θ(τ)2 = C(τ) with the
aid of the following theorem, in which we shall ultimately set f = C/θ2.

Theorem 3.4 Suppose f is a holomorphic function in the upper half-
plane that satisfies:

(i) f(τ + 2) = f(τ),

(ii) f(−1/τ) = f(τ),

(iii) f(τ) is bounded,

then f is constant.

For the proof of this theorem, we introduce the following subset of the
closed upper half-plane, which is defined by

F = {τ ∈ H : |Re(τ)| ≤ 1 and |τ | ≥ 1},

and illustrated in Figure 1.

F

−1 10

Figure 1. The domain F

The points corresponding to τ = ±1 are called cusps. They are equiv-
alent under the mapping τ 	→ τ + 2.
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Lemma 3.5 Every point in the upper half-plane can be mapped into F
using repeatedly one or another of the following fractional linear trans-
formations or their inverses:

T2 : τ 	→ τ + 2, S : τ 	→ −1/τ.

For this reason, F is called the fundamental domain5 for the group of
transformations generated by T2 and S.

In fact, we let G denote the group generated by T2 and S. Since T2

and S are fractional linear transformations, we may represent an element
g ∈ G by a matrix

g =
(
a b
c d

)
,

with the understanding that

g(τ) =
aτ + b

cτ + d
.

Since the matrices representing T2 and S have integer coefficients and
determinant 1, the same is true for all matrices of elements in G. In
particular, if τ ∈ H, then

(9) Im(g(τ)) =
Im(τ)

|cτ + d|2 .

Proof of Lemma 3.5. Let τ ∈ H. If g ∈ G withg(τ)=(aτ + b)/(cτ + d),
then c and d are integers, and by (9) we may choose a g0 ∈ G such that
Im(g0(τ)) is maximal. Since the translations T2 and their inverses do
not change imaginary parts, we may apply finitely many of them to see
that there exists g1 ∈ G with |Re(g1(τ))| ≤ 1 and Im(g1(τ)) is maximal.
It now suffices to prove that |g1(τ)| ≥ 1 to conclude that g1(τ) ∈ F . If
this were not true, that is, |g1(τ)| < 1, then Im(Sg1(τ)) would be greater
than Im(g1(τ)) since

Im(Sg1(τ)) = Im(−1/g1(τ)) = − Im(g1(τ))
|g1(τ)|2

> Im(g1(τ)),

and this contradicts the maximality of Im(g1(τ)).

We can now prove the theorem. Suppose f is not constant, and let
g(z) = f(τ) where z = eπiτ . The function g is well defined for z in the

5Strictly speaking, the notion of a fundamental domain requires that every point have
a unique representative in the domain. In the present case, ambiguity arises only for
points that are on the boundary of F .
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punctured unit disc, since f is periodic of period 2, and moreover, g is
bounded near the origin by assumption (iii) of the theorem. Hence 0 is
a removable singularity for g, and limz→0 g(z) = limIm(τ)→∞ f(τ) exists.
So by the maximum modulus principle,

lim
Im(τ)→∞

|f(τ)| < sup
τ∈F

|f(τ)|.

Now we must investigate the behavior of f at the points τ = ±1. Since
f(τ + 2) = f(τ), it suffices to consider the point τ = 1. We claim that

lim
Im(τ)→∞

f(1 − 1/τ)

exists and moreover

lim
Im(τ)→∞

|f(1 − 1/τ)| < sup
τ∈F

|f(τ)|.

The argument is essentially the same as the one above, except that we
first need to interchange τ = 1 with the point at infinity. In other words,
we wish to investigate the behavior of F (τ) = f(1 − 1/τ) for τ near ∞.
The important step is to prove that F is periodic. To this end, we
consider the fractional linear transformation associated to the matrix

Un =
(

1 − n n
−n 1 + n

)
,

that is,

τ 	→ (1 − n)τ + n

−nτ + (1 + n)
,

which maps 1 to 1. Now let µ(τ) = 1/(1 − τ) which maps 1 to ∞, and
whose inverse µ−1(τ) = 1 − 1/τ takes ∞ to 1. Then

Un = µ−1Tnµ,

where Tn is the translation Tn(τ) = τ + n. As a consequence,

UnUm = Un+m,

and

U−1 =
(

2 −1
1 0

)
= T2S.
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Thus any Un can be obtained by finitely many applications of T2, S, or
their inverses. Since f is invariant under T2 and S, it is also invariant
under Um. So we find that

f(µ−1Tnµ(τ)) = f(τ).

Therefore, if we let F (τ) = f(µ−1(τ)) = f(1 − 1/τ), we find that F is
periodic of period 1, that is,

F (Tnτ) = F (τ) for every integer n.

Now, by the previous argument, if we set h(z) = F (τ) with z = e2πiτ , we
see that h has a removable singularity at z = 0, and the desired inequality
follows by the maximum principle.

We conclude from this analysis that f attains its maximum in the inte-
rior of the upper half-plane, and this contradicts the maximum principle.

The proof of the two-squares theorem is now only one step away.
We consider the function f(τ) = C(τ)/θ(τ)2. Since we know by the

product formula that θ(τ) does not vanish in the upper half-plane (Corol-
lary 1.4), we find that f is holomorphic in H. Moreover, by Propo-
sition 3.3, f is invariant under the transformations T2 and S, that is,
f(τ + 2) = f(τ) and f(−1/τ) = f(τ). Finally, in the fundamental do-
main F , the function f(τ) is bounded, and in fact tends to 1 as Im(τ)
tends to infinity, or as τ tends to the cusps ±1. This is because of proper-
ties (iii) and (iv) in Proposition 3.3, which are verified by both C and θ2.
Thus f is bounded in H. The result is that f is a constant, which must
be 1, proving that θ(τ)2 = C(τ), and with it the two-squares theorem.

3.2 The four-squares theorem

Statement of the theorem

In the rest of this chapter, we shall consider the case of four squares.
More precisely, we will prove that every positive integer is the sum of
four squares, and moreover we will determine a formula for r4(n) that
describes the number of ways this can be done.

We need to introduce another divisor function, which we denote by
σ∗

1(n), and which equals the sum of divisors of n that are not divisible
by 4. The main theorem we shall prove is the following.

Theorem 3.6 Every positive integer is the sum of four squares, and
moreover

r4(n) = 8σ∗
1(n) for all n ≥ 1.
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As before, we relate the sequence {r4(n)} via its generating function
to an appropriate power of the function θ, which in this case is its fourth
power. The result is that

θ(τ)4 =
∞∑

n=0

r4(n)qn

whenever q = eπiτ with τ ∈ H.

The next step is to find the modular function whose equality with
θ(τ)4 expresses the identity r4(n) = 8σ∗

1(n). Unfortunately, here there
is nothing as simple as the function C(τ) that arose in the two-squares
theorem; instead we shall need to construct a rather subtle variant of the
Eisenstein series considered in the previous chapter. In fact, we define

E∗
2 (τ) =

∑
m

∑
n

1(
mτ
2

+ n
)2 −

∑
m

∑
n

1(
mτ + n

2

)2
for τ ∈ H. The indicated order of summation is critical, since the above
series do not converge absolutely. The following reduces the four-squares
theorem to the modular properties of E∗

2 .

Proposition 3.7 The assertion r4(n) = 8σ∗
1(n) is equivalent to the iden-

tity

θ(τ)4 =
−1
π2
E∗

2 (τ), where τ ∈ H.

Proof. It suffices to prove that if q = eπiτ , then

−1
π2
E∗

2 (τ) = 1 +
∞∑

k=1

8σ∗
1(k)q

k.

First, recall the forbidden Eisenstein series that we considered in the
last section of the previous chapter, and which is defined by

F (τ) =
∑
m

[∑
n

1
(mτ + n)2

]
,

where the term n = m = 0 is omitted. Since the sum above is not abso-
lutely convergent, the order of summation, first in n and then in m, is
crucial. With this in mind, the definitions of E∗

2 and F give immediately

(10) E∗
2 (τ) = F

(τ
2

)
− 4F (2τ).
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In Corollary 2.6 (and Exercise 7) of the last chapter, we proved that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ ,

where σ1(k) is the sum of the divisors of k.
Now observe that

σ∗
1(n) =

{
σ1(n) if n is not divisible by 4,
σ1(n) − 4σ1(n/4) if n is divisible by 4.

Indeed, if n is not divisible by 4, then no divisors of n are divisible by
4. If n = 4ñ, and d is a divisor of n that is divisible by 4, say d = 4d̃,
then d̃ divides ñ. This gives the second formula. Therefore, from this
observation and (10) we find that

E∗
2 (τ) = −π2 − 8π2

∞∑
k=1

σ∗
1(k)eπikτ ,

and the proof of the proposition is complete.

We have therefore reduced Theorem 3.6 to the identity θ4 = −π−2E∗
2 ,

and the key to establish this relation is that E∗
2 satisfies the same modular

properties as θ(τ)4.

Proposition 3.8 The function E∗
2 (τ) defined in the upper half-plane has

the following properties:

(i) E∗
2 (τ + 2) = E∗

2 (τ).

(ii) E∗
2 (τ) = −τ−2E∗

2 (−1/τ).

(iii) E∗
2 (τ) → −π2 as Im(τ) → ∞.

(iv) |E∗
2 (1 − 1/τ)| = O(|τ2eπiτ |) as Im(τ) → ∞.

Moreover −π2θ4 has the same properties.

The periodicity (i) of E∗
2 is immediate from the definition. The proofs

of the other properties of E∗
2 are a little more involved.

Consider the forbidden Eisenstein series F and its reverse F̃ , which is
obtained from reversing the order of summation:

F (τ) =
∑
m

∑
n

1
(mτ + n)2

and F̃ (τ) =
∑

n

∑
m

1
(mτ + n)2

.

In both cases, the term n = m = 0 is omitted.
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Lemma 3.9 The functions F and F̃ satisfy:

(a) F (−1/τ) = τ2F̃ (τ),

(b) F (τ) − F̃ (τ) = 2πi/τ ,

(c) F (−1/τ) = τ2F (τ) − 2πiτ .

Proof. Property (a) follows directly from the definitions of F and F̃ ,
and the identity

(n+m(−1/τ))2 = τ−2(−m+ nτ)2.

To prove property (b), we invoke the functional equation for the Dedekind
eta function which was established earlier:

η(−1/τ) =
√
τ/i η(τ),

where η(τ) = q1/12
∏∞

n=1(1 − q2n), and q = eπiτ .
First, we take the logarithmic derivative of η with respect to the vari-

able τ to find (by Proposition 3.2 in Chapter 5)

(η′/η)(τ) =
πi

12
− 2πi

∞∑
n=1

nq2n

1 − q2n
.

However, if σ1(k) denotes the sum of the divisors of k, then one sees that

∞∑
n=1

nq2n

1 − q2n
=

∞∑
n=1

∞∑
=0

nq2nq2n

=
∞∑

n=1

∞∑
m=1

nq2nm

=
∞∑

k=1

σ1(k)q2k.

If we recall that F (τ) = π2/3 − 8π2
∑∞

k=1 σ1(k)q2k, we find

(η′/η)(τ) =
i

4π
F (τ).

By the chain rule, the logarithmic derivative of η(−1/τ) is τ−2(η′/η)(−1/τ),
and using property (a), we see that the logarithmic derivative of η(−1/τ)
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equals (i/4π)F̃ (τ). Therefore, taking the logarithmic derivative of the
functional equation for η we find

i

4π
F̃ (τ) =

1
2τ

+
i

4π
F (τ),

and this gives F̃ (τ) = −2πi/τ + F (τ), as desired.
Finally, (c) is a consequence of (a) and (b).

To prove the transformation formula (ii) for E∗
2 under τ 	→ −1/τ , we

begin with

E∗
2 (τ) = F (τ/2) − 4F (2τ).

Then

E∗
2 (−1/τ) = F (−1/(2τ))− 4F (−2/τ)

= [4τ2F (2τ) − 4πiτ ] − 4[(τ/2)2F (τ/2)− πiτ ]

= 4τ2F (2τ) − 4(τ2/4)F (τ/2)
= −τ2(F (τ/2)− 4F (2τ))

= −τ2E∗
2 (τ),

as desired. To prove the third property recall that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ ,

where the sum goes to 0 as Im(τ) → ∞. Then, if we use the fact that

E∗
2 (τ) = F (τ/2) − 4F (2τ),

we conclude that E∗
2 (τ) → −π2 as Im(τ) → ∞.

To prove the final property, we begin by showing that

(11) E∗
2 (1 − 1/τ) = τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
.

From the transformation formulas for F we have

F (1/2 − 1/2τ) = F

(
τ − 1
2τ

)
=
(

2τ
τ − 1

)2

F

(
2τ

1 − τ

)
− 2πi

2τ
1 − τ

,
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and

F

(
2τ

1 − τ

)
= F (−2 + 2/(1 − τ))

= F (2/(1 − τ))

=
(

1 − τ

2

)2

F

(
τ − 1

2

)
− 2πi

(
τ − 1

2

)
.

Hence,

F (1/2 − 1/2τ) = τ2F

(
τ − 1

2

)
− 2πi2τ

1 − τ
− 2πi

(2τ)2

(τ − 1)2

(
τ − 1

2

)
.

But F (2 − 2/τ) = F (−2/τ) = (τ2/4)F (τ/2)− 2πiτ/2, and hence

E∗
2 (1 − 1/τ) = F (1/2 − 1/2τ)− 4F (2 − 2/τ)

= τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
− 2πi

(
2τ

1 − τ
+

2τ2

τ − 1

)
+ 4πiτ

= τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
.

This proves (11). Then, the last property follows from it and the fact
that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ .

Thus Proposition 3.8 is proved.

We can now conclude the proof of the four-squares theorem by consid-
ering the quotient f(τ) = E∗

2 (τ)/θ(τ)4, and applying Theorem 3.4, as in
the two-squares theorem. Recall θ(τ)4 → 1 and θ(1 − 1/τ)4 ∼ 16τ2eπiτ ,
as Im(τ) → ∞. The result is that f(τ) is a constant, which equals −π2 by
Proposition 3.8. This completes the proof of the four-squares theorem.

4 Exercises

1. Prove that

(Θ′(z|τ ))2 − Θ(z|τ )Θ′′(z|τ )
Θ(z|τ )2 = ℘τ (z − 1/2 − τ/2) + cτ ,

where cτ can be expressed in terms of the first two derivatives of Θ(z|τ ), with
respect to z, at z = 1/2 + τ/2. Compare this formula with the result in Exercise 5
in the previous chapter.
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2. Consider the Fibonacci numbers {Fn}∞n=0, defined by the two initial values
F0 = 0, F1 = 1 and the recursion relation

Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Consider the generating function F (x) =
∑∞

n=0 Fnx
n associated to {Fn},

and prove that

F (x) = x2F (x) + xF (x) + x

for all x in a neighborhood of 0.

(b) Show that the polynomial q(x) = 1 − x− x2 can be factored as

q(x) = (1 − αx)(1 − βx),

where α and β are the roots of the polynomial p(x) = x2 − x− 1.

(c) Expand the expression for F in partial fractions and obtain

F (x) =
x

1 − x− x2
=

x

(1 − αx)(1 − βx)
=

A

1 − αx
+

B

1 − βx
,

where A = 1/(α− β) and B = 1/(β − α).

(d) Conclude that Fn = Aαn +Bβn for n ≥ 0. The two roots of p are actually

α =
1 +

√
5

2
and β =

1 −√
5

2
,

so that A = 1/
√

5 and B = −1/
√

5.

The number 1/α = (
√

5 − 1)/2, which is known as the golden mean, satisfies
the following property: given a line segment [AC] of unit length (Figure 2), there
exists a unique point B on this segment so that the following proportion holds

AC

AB
=
AB

BC
.

If � = AB, this reduces to the equation �2 + �− 1 = 0, whose only positive solu-
tion is the golden mean. This ratio arises also in the construction of the regular
pentagon. It has played a role in architecture and art, going back to the time of
ancient Greece.

3. More generally, consider the difference equation given by the initial values u0

and u1, and the recurrence relation un = aun−1 + bun−2 for n ≥ 2. Define the
generating function associated to {un}∞n=0 by U(x) =

∑∞
n=0 unx

n. The recurrence
relation implies that U(x)(1 − ax− bx2) = u0 + (u1 − au0)x in a neighborhood of
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1

BA C

�

Figure 2. Appearance of the golden mean

the origin. If α and β denote the roots of the polynomial p(x) = x2 − ax− b, then
we may write

U(x) =
u0 + (u1 − au0)x

(1 − αx)(1 − βx)
=

A

1 − αx
+

B

(1 − βx)
= A

∞∑
n=0

αnxn +B
∞∑

n=0

βnxn,

where it is an easy matter to solve for A and B. Finally, this gives un = Aαn +
Bβn. Note that this approach yields a solution to our problem if the roots of p
are distinct, namely α 
= β. A variant of the formula holds if α = β.

4. Using the generating formula for p(n), prove the recurrence formula

p(n) = p(n− 1) + p(n− 2) − p(n− 5) − p(n− 7) − · · ·

=
∑
k 	=0

(−1)k+1p

(
n− k(3k + 1)

2

)
,

where the right-hand side is the finite sum taken over those k ∈ Z, k 
= 0, with
k(3k + 1)/2 ≤ n. Use this formula to calculate p(5), p(6), p(7), p(8), p(9), and
p(10); check that p(10) = 42.

The next two exercises give elementary results related to the asymptotics of the
partition function. More refined statements can be found in Appendix A.

5. Let

F (x) =

∞∑
n=0

p(n)xn =

∞∏
n=1

1

1 − xn

be the generating function for the partitions. Show that

logF (x) ∼ π2

6(1 − x)
as x→ 1, with 0 < x < 1.

[Hint: Use logF (x) =
∑

log(1/(1 − xn)) and log(1/(1 − xn)) =
∑

(1/m)xnm, so

logF (x) =
∑ 1

m

xm

1 − xm
.

Use also mxm−1(1 − x) < 1 − xm < m(1 − x).]
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6. Show as a consequence of Exercise 5 that

ec1n1/2 ≤ p(n) ≤ ec2n1/2

for two positive constants c1 and c2.

[Hint: F (e−y) =
∑
p(n)e−ny ≤ Cec/y as y → 0. So p(n)e−ny ≤ cec/y. Take y =

1/n1/2 to get p(n) ≤ c′ec′n1/2
. In the opposite direction

m∑
n=0

p(n)e−ny ≥ C(ec/y −
∞∑

n=m+1

ecn1/2
e−ny),

and it suffices to take y = Am−1/2 where A is a large constant, and use the fact
that the sequence p(n) is increasing.]

7. Use the product formula for Θ to prove:

(a) The “triangular number” identity

∞∏
n=0

(1 + xn)(1 − x2n+2) =

∞∑
n=−∞

xn(n+1)/2,

which holds for |x| < 1.

(b) The “septagonal number” identity

∞∏
n=0

(1 − x5n+1)(1 − x5n+4)(1 − x5n+5) =
∞∑

n=−∞
(−1)nxn(5n+3)/2,

which holds for |x| < 1.

8. Consider Pythagorean triples (a, b, c) with a2 + b2 = c2, and with a, b, c ∈ Z.
Suppose moreover that a and b have no common factors.

(a) Show that either a or b must be odd, and the other even.

(b) Show in this case (assuming a is odd and b even) that there are integers
m,n so that a = m2 − n2, b = 2mn, and c = m2 + n2. [Hint: Note that
b2 = (c− a)(c+ a), and prove that (c− a)/2 and (c+ a)/2 are relatively
prime integers.]

(c) Conversely, show that whenever c is a sum of two-squares, then there exist
integers a and b such that a2 + b2 = c2.

9. Use the formula for r2(n) to prove the following:

(a) If n = p, where p is a prime of the form 4k + 1, then r2(n) = 8. This implies
that n can be written in a unique way as n = n2

1 + n2
2, except for the signs

and reordering of n1 and n2.

(b) If n = qa, where q is prime of the form 4k + 3 and a is a positive integer,
then r2(n) > 0 if and only if a is even.
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(c) In general, n can be represented as the sum of two squares if and only if all
the primes of the form 4k + 3 that arise in the prime decomposition of n
occur with even exponents.

10. Observe the following irregularities of the functions r2(n) and r4(n) as n
becomes large:

(a) r2(n) = 0 for infinitely many n, while lim supn→∞ r2(n) = ∞.

(b) r4(n) = 24 for infinitely many n while lim supn→∞ r4(n)/n = ∞.

[Hint: For (a) consider n = 5k; for (b) consider alternatively n = 2k, and n = qk

where q is odd and large.]

11. Recall from Problem 2 in Chapter 2, that

∞∑
n=1

d(n)zn =
∞∑

n=1

zn

1 − zn
, |z| < 1

where d(n) denotes the number of divisors of n.
More generally, show that

∞∑
n=1

σ�(n)zn =

∞∑
n=1

n�zn

1 − zn
, |z| < 1

where σ�(n) is the sum of the �th powers of divisors of n.

12. Here we give another identity involving θ4, which is equivalent to the four-
squares theorem.

(a) Show that for |q| < 1

∞∑
n=1

nqn

1 − qn
=

∞∑
n=1

qn

(1 − qn)2
.

[Hint: The left-hand side is
∑
σ1(n)qn. Use x/(1 − x)2 =

∑∞
n=1 nx

n.]

(b) Show as a result that

∞∑
n=1

nqn

1 − qn
−

∞∑
n=1

4nq4n

1 − q4n
=

∞∑
n=1

qn

(1 − qn)2
− 4

∞∑
n=1

q4n

(1 − q4n)2
=
∑

σ∗
1(n)qn

where σ∗
1(n) is the sum of the divisors of d that are not divisible by 4.

(c) Show that the four-squares theorem is equivalent to the identity

θ(τ )4 = 1 + 8

∞∑
n=1

qn

(1 + (−1)nqn)2
, q = eπiτ .
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5 Problems

1.∗ Suppose n is of the form n = 4a(8k + 7), where a and k are positive integers.
Show that n cannot be written as the sum of three-squares. The converse, that
every n that is not of that form can be written as the sum of three-squares, is a
difficult theorem of Legendre and Gauss.

2. Let SL2(Z) denote the set of 2 × 2 matrices with integer entries and determinant
1, that is,

SL2(Z) =

{
g =

(
a b
c d

)
: a, b, c, d ∈ Z and ad− bc = 1

}
.

This group acts on the upper half-plane by the fractional linear transformation
g(τ ) = (aτ + b)/(cτ + d). Together with this action comes the so-called funda-
mental domain F1 in the complex plane defined by

F1 = {τ ∈ C : |τ | ≥ 1, |Re(τ )| ≤ 1/2 and |Im(τ )| ≥ 0}.
It is illustrated in Figure 3.

F1

−1 10

Figure 3. The fundamental domain F1

Consider the two elements in SL2(Z) defined by S(τ ) = −1/τ and T1(τ ) = τ + 1.
These correspond (for example) to the matrices(

0 −1
1 0

)
and

(
1 1
0 1

)
,

respectively. Let g be the subgroup of SL2(Z) generated by S and T1.

(a) Show that for every τ ∈ H there exists g ∈ g such that g(τ ) ∈ F1.

(b) We say that two points τ and τ ′ are congruent if there exists g ∈ SL2(Z) such
that g(τ ) = w. Prove that if τ, w ∈ F1 are congruent, then either Re(τ ) =
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±1/2 and τ ′ = τ ∓ 1 or |τ | = 1 and τ ′ = −1/τ . [Hint: Say τ ′ = g(τ ). Why
can one assume that Im(τ ′) ≥ Im(τ ), and therefore |cτ + d| ≤ 1? Now con-
sider separately the possibilities c = −1, c = 0, or c = 1.]

(c) Prove that S and T1 generate the modular group in the sense that every
fractional linear transformation corresponding to g ∈ SL2(Z) is a composi-
tion of finitely many S’s and T1’s, and their inverses. Strictly speaking, the
matrices associated to S and T1 generate the projective special linear group
PSL2(Z), which equals SL2(Z) modulo ±I . [Hint: Observe that 2i is in the
interior of F1. Now map g(2i) back into F1 by using part (a). Use part (b)
to conclude.]

3. In this problem, consider the group G of matrices

(
a b
c d

)
with integer

entries, determinant 1, and such that a and d have the same parity, b and c have
the same parity, and c and d have opposite parity. This group also acts on the
upper half-plane by fractional linear transformations. To the group G corresponds
the fundamental domain F defined by |τ | ≥ 1, |Re(τ )| ≤ 1, and Im(τ ) ≥ 0 (see
Figure 1). Also, let

S(τ ) = −1/τ ↔
(

0 −1
1 0

)
and T2(τ ) = τ + 2 ↔

(
1 2
0 1

)
.

Prove that every fractional linear transformation corresponding to g ∈ G is a
composition of finitely many S, T2 and their inverses, in analogy with the previous
problem.

4. Let G denote the group of matrices given in the previous problem. Here we
give an alternate proof of Theorem 3.4, that states that a function in H which is
holomorphic, bounded, and invariant under G must be constant.

(a) Suppose that f : H → C is holomorphic, bounded, and that there exists a
sequence of complex numbers τk = xk + iyk such that

f(τk) = 0,
∞∑

k=1

yk = ∞, 0 < yk ≤ 1, and |xk| ≤ 1.

Then f = 0. [Hint: When xk = 0 see Problem 5 in Chapter 8.]

(b) Given two relatively prime integers c and d with different parity, show that

there exist integers a and b such that

(
a b
c d

)
∈ G. [Hint: All the so-

lutions of xc+ dy = 1 take the form x0 + dt and y0 − ct where x0, y0 is a
particular solution and t ∈ Z.]

(c) Prove that
∑

1/(c2 + d2) = ∞ where the sum is taken over all c and d
that are relatively prime and of opposite parity. [Hint: Suppose not, and
prove that

∑
(a,b)=1 1/(a2 + b2) <∞ where the sum is over all relatively

prime integers a and b. To do so, note that if a and b are both odd and
relatively prime, then the two numbers c and d defined by c = (a+ b)/2
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and d = (a− b)/2 are relatively prime and of opposite parity. Moreover,
c2 + d2 ≤ A(a2 + b2) for some universal constant A. Therefore∑

n	=0

1

n2

∑
(a,b)=1

1

a2 + b2
<∞,

hence
∑

1/(k2 + �2) <∞, where the sum is over all integers k and � such
that k, � 
= 0. Why is this a contradiction?]

(d) Prove that if F : H → C is holomorphic, bounded, and invariant under
G, then F is constant. [Hint: Replace F (τ ) by F (τ ) − F (i) so that we
can assume F (i) = 0 and prove F = 0. For each relatively prime c and
d with opposite parity, choose g ∈ G so that g(i) = xc,d + i/(c2 + d2) with
|xc,d| ≤ 1.]

5.∗ In Chapter 9 we proved that the Weierstrass ℘ function satisfies the cubic
equation

(℘′)2 = 4℘3 − g2℘− g3,

where g2 = 60E4, g3 = 140E6, with Ek is the Eisenstein series of order k. The
discriminant of the cubic y2 = 4x3 − g2x− g3 is defined by  = g3

2 − 27g2
3 . Prove

that
(τ ) = (2π)12η24(τ ) for all τ ∈ H.

[Hint:  and η24 satisfy the same transformation laws under τ �→ τ + 1 and τ �→
−1/τ . Because of the fundamental domain described in Problem 2, it suffices then
to investigate the behavior at the only cusp, which is at infinity.]

6.∗ Here we will deduce the formula for r8(n), which counts the number of repre-
sentations of n as a sum of eight squares. The method is parallel to that of r4(n),
but the details are less delicate.

Theorem: r8(n) = 16σ∗
3 (n).

Here σ∗
3(n) = σ3(n) =

∑
d|n d

3, when n is odd. Also, when n is even

σ∗
3(n) =

∑
d|n

(−1)dd3 = σe
3(n) − σo

3(n),

where σe
3(n) =

∑
d|n, d even d

3 and σo
3(n) =

∑
d|n, d odd d

3.
Consider the appropriate Eisenstein series

E∗
4(τ ) =

∑ 1

(n+mτ )4
,

where the sum is over integers n and m with opposite parity. Recall the standard
Eisenstein series

E4(τ ) =
∑

(n,m) 	=(0,0)

1

(n+mτ )4
.

Notice that the series defining E∗
4 is absolutely convergent, in distinction to E∗

2(τ ),
which arose when considering r4(n). This makes some of the considerations below
quite a bit simpler.
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(a) Prove that r8(n) = 16σ∗
3(n) is equivalent to the identity θ(τ )8 = 48π−4E∗

4 (τ ).

[Hint: Use the fact that E4(τ ) = 2ζ(4) + (2π)4

3

∑∞
k=1 σ3(k)e

2πikτ and ζ(4) =
π4/90.]

(b) Note that E∗
4 (τ ) = E4(τ ) − 2−4E4((τ − 1)/2).

(c) E∗
4 (τ + 2) = E∗

4 (τ ).

(d) E∗
4 (τ ) = τ−4E∗

4 (−1/τ ).

(e) (48/π4)E∗
4(τ ) → 1 as τ → ∞.

(f) |E∗
4 (1 − 1/τ )| ≈ |τ |4|e2πiτ |, as Im(τ ) → ∞. [Hint: Verify that E∗

4 (1 − 1/τ ) =
τ 4(E4(τ ) − E4(2τ )).]

Since θ(τ )8 satisfies properties similar to (c), (d), (e) and (f) above, it follows that
the invariant function 48π−4E∗

4 (τ )/θ(τ )8 is bounded and hence a constant, which
must be 1. This gives the desired result.
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On the numerical computation of the definite integral∫
w

cos π
2
(w3 −m.w), between the limits 0 and 1

0
.

The simplicity of the form of this differential
coefficient induces me to suppose that the integral
may possibly be expressible by some of the integrals
whose values have been tabulated. After many at-
tempts however, I have not succeeded in reducing it
to any known integral: and I have therefore computed
its value by actual summation to a considerable extent
and by series for the remainder.

G. B. Airy, 1838

In a number of problems in analysis the solution is given by a function
whose explicit calculation is not tractable. Often a useful substitute (and
the only recourse) is to study the asymptotic behavior of this function
near the point of interest. Here we shall investigate several related types
of asymptotics, where the ideas of complex analysis are of crucial help.
These typically center about the behavior for large values of the variable
s of an integral of the form

(1) I(s) =
∫ b

a

e−sΦ(x) dx.

We organize our presentation by formulating three guiding principles.

(i) Deformation of contour. The function Φ is in general complex-
valued, therefore, for large s the integrand in (1) may oscillate
rapidly, so that the resulting cancellations mask the true behavior
of I(s). When Φ is holomorphic (which is often the case) one can
hope to change the contour of integration so that as far as possible,
on the new contour Φ is essentially real-valued. If this is possible,
one can then hope to read off the behavior of I(s) in a rather direct
manner. This idea will be illustrated first in the context of Bessel
functions.

(ii) Laplace’s method. In the case when Φ is real-valued on the
contour and s is positive, the maximum contribution to I(s) comes
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from the integration near a minimum of Φ, and this leads to a
satisfactory expansion in terms of the quadratic behavior of Φ near
its minimum. We apply these ideas to present the asymptotics of
the gamma function (Stirling’s formula), and also those of the Airy
function.

(iii) Generating functions. If {Fn} is a number-theoretic or combina-
torial sequence, we have already seen in several examples that one
can exploit analytic properties of the generating function, F (u) =∑
Fnu

n, to obtain interesting conclusions regarding {Fn}. In fact
the asymptotic behavior of Fn, as n→ ∞, can also be analyzed
this way, via the formula

Fn =
∫

γ

F (e2πiz)e−2πinz dz.

Here γ is an appropriate segment of unit length in the upper half-
plane. This formula can then be studied as a variant of the in-
tegral (1). We shall show how these ideas apply in an important
particular case to obtain an asymptotic formula for p(n), the num-
ber of partitions of n.

1 Bessel functions

Bessel functions appear naturally in many problems that exhibit rota-
tional symmetries. For instance, the Fourier transform of a spherical
function in Rd is neatly expressed in terms of a Bessel function of order
(d/2) − 1. See Chapter 6 in Book I.

The Bessel functions can be defined by a number of alternative formu-
las. We take the one that is valid for all order ν > −1/2, given by

(2) Jν(s) =
(s/2)ν

Γ(ν + 1/2)Γ(1/2)

∫ 1

−1

eisx(1 − x2)ν−1/2 dx.

If we also write J−1/2(s) for limν→−1/2 Jν(s), we see that it equals√
2

πs cos s; observe in addition that J1/2(s) =
√

2
πs sin s. However, Jν(s)

has an expression in terms of elementary functions only when ν is half-
integral, and understanding this function in general requires further anal-
ysis. Its behavior for large s is suggested by the two examples above.

Theorem 1.1 Jν(s) =

√
2
πs

cos
(
s− πν

2
− π

4

)
+ O

(
s−3/2

)
as s→ ∞.
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In view of the formula for Jν(s) it suffices to investigate

(3) I(s) =
∫ 1

−1

eisx(1 − x2)ν−1/2 dx,

and to this end we consider the analytic function f(z) = eisz(1 − z2)ν−1/2

in the complex plane slit along the rays (−∞,−1) ∪ (1,∞); for
(1 − z2)ν−1/2 we choose that branch that is positive when z = x ∈ (−1, 1).
With s > 0 fixed, we apply Cauchy’s theorem to see that

I(s) = −I−(s) − I+(s),

where the integrals I(s), I−(s), and I+(s) are taken over the lines shown
in Figure 1. This is established by using the fact that

∫
γε,R

f(z) dz = 0
where γε,R is the second contour of Figure 1, and letting ε→ 0 and
R→ ∞.

−1 1
I

0 1−1

−1 + iR 1 + iR

1 + iε−1 + iε

I+I−

Figure 1. Contours of integration of I(s), I−(s), I+(s), and the contour
γε,R

On the contour for I+(s) we have z = 1 + iy, so

(4) I+(s) = ieis

∫ ∞

0

e−sy(1 − (1 + iy)2)ν−1/2 dy.

There is a similar expression for I−(s).
What has the passage from I(s) to −(I−(s) + I+(s)) gained us? Ob-

serve that for large positive s, the exponential eisx in (3) oscillates
rapidly, so the estimation of that integral is not obvious at first glance.
However, in (4) the corresponding exponential is e−sy, and it decreases
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rapidly as s→ ∞, except when y = 0. Thus in this case one sees im-
mediately that the main contribution to the integral comes from the
integration near y = 0, and this allows one readily to approximate this
integral. This idea is made precise in the following observation.

Proposition 1.2 Suppose a and m are fixed, with a > 0 and m > −1.
Then as s→ ∞

(5)
∫ a

0

e−sxxm dx = s−m−1Γ(m+ 1) + O(e−cs),

for some positive c.

Proof. The fact that m > −1 guarantees that
∫ a

0
e−sxxm dx =

limε→0

∫ a

ε
e−sxxm dx exists. Then, we write∫ a

0

e−sxxm dx =
∫ ∞

0

e−sxxm dx−
∫ ∞

a

e−sxxm dx.

The first integral on the right-hand side can be seen to equal
s−m−1Γ(m+ 1), if we make the change of variables x 	→ x/s. For the
second integral we note that

(6)
∫ ∞

a

e−sxxm dx = e−cs

∫ ∞

a

e−s(x−c)xm dx = O(e−cs),

as long as c < a, and so the proposition is proved.

We return to the integral (4) and observe that

(1 − (1 + iy)2)ν−1/2 = (−2iy)ν−1/2 +O(yν+1/2), for 0 ≤ y ≤ 1,

while

(1 − (1 + iy)2)ν−1/2 = O(yν−1/2 + y2ν−1), for 1 ≤ y.

So, applying the proposition with a = 1 and m = ν ∓ 1/2, as well as (6),
gives

I+(s) = i(−2i)ν−1/2eiss−ν−1/2Γ(ν + 1/2) +O(s−ν−3/2).

Similarly,

I−(s) = i(2i)ν−1/2eiss−ν−1/2Γ(ν + 1/2) +O(s−ν−3/2).



322 Appendix A: ASYMPTOTICS

If we recall that

Jν(s) =
(s/2)ν

Γ(ν + 1/2)Γ(1/2)
[−I−(s) − I+(s)],

and the fact that Γ(1/2) =
√
π, we see that we have obtained the proof

of the theorem.

For later purposes it is interesting to point out that under certain
restricted circumstances, the gist of the conclusion in Proposition 1.2
extends to the complex half-plane Re(s) ≥ 0.

Proposition 1.3 Suppose a and m are fixed, with a > 0 and
−1 < m < 0. Then as |s| → ∞ with Re(s) ≥ 0,∫ a

0

e−sxxm dx = s−m−1Γ(m + 1) +O(1/|s|).

(Here s−m−1 is the branch of that function that is positive for s > 0).

Proof. We begin by showing that when Re(s) ≥ 0, s �= 0,∫ ∞

0

e−sxxm dx = lim
N→∞

∫ N

0

e−sxxm dx

exists and equals s−m−1Γ(m + 1). If N is large, we first write∫ N

0

e−sxxm dx =
∫ a

0

e−sxxm dx+
∫ N

a

e−sxxm dx.

Since m > −1, the first integral on the right-hand side defines an analytic
function everywhere. For the second integral, we note that −1

s
d
dx (e−sx) =

e−sx, so an integration by parts gives

(7)
∫ N

a

e−sxxm dx =
m

s

∫ N

a

e−sxxm−1 dx−
[
e−sx

s
xm

]N

a

.

This identity, together with the convergence of the integral
∫∞

a
xm−1dx,

shows that
∫∞

a
e−sxxm dx defines an analytic function on Re(s) > 0 that

is continuous on Re(s) ≥ 0, s �= 0. Thus
∫∞
0
e−sxxm dx is analytic on the

half-plane Re(s) > 0 and continuous on Re(s) ≥ 0, s �= 0. Since it equals
s−m−1Γ(m+ 1) when s is positive, we deduce that

∫∞
0
e−sxxm dx =

s−m−1Γ(m+ 1) when Re(s) ≥ 0, s �= 0.
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However, we now have∫ a

0

e−sxxm dx =
∫ ∞

0

e−sxxm dx−
∫ ∞

a

e−sxxm dx.

It is clear from (7), and from the fact that m < 0, that if we let N → ∞,
then

∫∞
a
e−sxxm−1 dx = O(1/|s|). The proposition if therefore proved.

Note. If one wants to obtain a better error term in Proposition 1.3,
or for that matter extend the range of m, then one needs to mitigate the
effect of the contribution of the end-point x = a. This can be done by
introducing suitable smooth cut-offs. See Problem 1.

2 Laplace’s method; Stirling’s formula

We have already mentioned that when Φ is real-valued, the main contri-
bution to

∫ b

a
e−sΦ(x) dx as s→ ∞ comes from the point where Φ takes its

minimum value. A situation where this minimum is attained at one of
the end-points, a or b, was considered in Proposition 1.2. We now turn
to the important case when the minimum is achieved in the interior of
[a, b].

Consider ∫ b

a

e−sΦ(x)ψ(x) dx

where the phase Φ is real-valued, and both it and the amplitude ψ
are assumed for simplicity to be indefinitely differentiable. Our hypoth-
esis regarding the minimum of Φ is that there is an x0 ∈ (a, b) so that
Φ′(x0) = 0, but Φ′′(x0) > 0 throughout [a, b] (Figure 2 illustrates the
situation.)

Proposition 2.1 Under the above assumptions, with s > 0 and s→ ∞,

(8)
∫ b

a

e−sΦ(x)ψ(x) dx = e−sΦ(x0)

[
A

s1/2
+O

(
1
s

)]
,

where

A =
√

2π
ψ(x0)

(Φ′′(x0))1/2
.

Proof. By replacing Φ(x) by Φ(x) − Φ(x0) we may assume that
Φ(x0) = 0. Since Φ′(x0) = 0, we note that

Φ(x)
(x− x0)2

=
Φ′′(x0)

2
ϕ(x),
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Φ(x)

a bx0

Figure 2. The function Φ, with its minimum at x0

where ϕ is smooth, and ϕ(x) = 1 +O(x− x0) as x→ x0. We can there-
fore make the smooth change of variables x 	→ y = (x− x0)(ϕ(x))1/2 in
a small neighborhood of x = x0, and observe that dy/dx|x0 = 1, and
thus dx/dy = 1 +O(y) as y → 0. Moreover, we have ψ(x) = ψ̃(y) with
ψ̃(y) = ψ(x0) +O(y) as y → 0. Hence if [a′, b′] is a sufficiently small in-
terval containing x0 in its interior, by making the indicated change of
variables we obtain
(9)∫ b′

a′
e−sΦ(x)ψ(x) dx = ψ(x0)

∫ β

α

e−s
Φ′′(x0)

2 y2
dy + O

(∫ β

α

e−s
Φ′′(x0)

2 y2 |y|dy
)
,

where α < 0 < β. We now make the further change of variables y2 = X,
dy = 1

2X
−1/2 dX, and we see by (5) that the first integral on the right-

hand side in (9) is

∫ a0

0

e−s
Φ′′(x0)

2 XX−1/2 dX +O(e−δs) = s−1/2

(
2π

Φ′′(x0)

)1/2

+O(e−δs),

for some δ > 0. By the same argument, the second integral is O(1/s).
What remains are the integrals of e−sΦ(x)ψ(x) over [a, a′] and [b′, b]; but
these integrals decay exponentially as s→ ∞, since Φ(x) ≥ c > 0 in these
two sub-intervals. Altogether, this establishes (8) and the proposition.

It is important to realize that the asymptotic relation (8) extends to
all complex s with Re(s) ≥ 0. The proof, however, requires a somewhat
different argument: here we must take into account the oscillations of
e−sΦ(x) when |s| is large but Re(s) is small, and this is achieved by a
simple integration by parts.
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Proposition 2.2 With the same assumptions on Φ and ψ, the rela-
tion (8) continues to hold if |s| → ∞ with Re(s) ≥ 0.

Proof. We proceed as before to the equation (9), and obtain the
appropriate asymptotic for the first term, by virtue of Proposition 1.3,
with m = −1/2. To deal with the rest we start with an observation. If Ψ
and ψ are given on an interval [a, b], are indefinitely differentiable, and
Ψ(x) ≥ 0, while |Ψ′(x)| ≥ c > 0, then if Re(s) ≥ 0,

(10)
∫ b

a

e−sΨ(x)ψ(x) dx = O

(
1
|s|

)
as |s| → ∞.

Indeed, the integral equals

−1
s

∫ b

a

d

dx

(
e−sΨ(x)

) ψ(x)
Ψ′(x)

dx,

which by integration by parts gives

1
s

∫ b

a

e−sΨ(x) d

dx

(
ψ(x)
Ψ′(x)

)
dx− 1

s

[
e−sΨ(x) ψ(x)

Ψ′(x)

]b

a

.

The assertion (10) follows immediately since |e−sΨ(x)| ≤ 1, when
Re(s) ≥ 0. This allows us to deal with the integrals of e−sΦ(x)ψ(x) in
the complementary intervals [a, a′] and [b′, b], because in each, |Φ′(x)| ≥
c > 0, since Φ′(x0) = 0 and Φ′′(x) ≥ c1 > 0.

Finally, for the second term on the right-hand side of (9) we observe
that it is actually of the form∫ β

α

e−s
Φ′′(x0)

2 y2
yη(y) dy,

where η(y) is differentiable. Then we can again estimate this term by
integration by parts, once we write it as

− 1
sΦ′′(x0)

∫ β

α

d

dy

(
e−s

Φ′′(x0)
2 y2

)
η(y) dy,

obtaining the bound O(1/|s|).

The special case of Proposition 2.2 when s is purely imaginary, s = it,
t→ ±∞, is often treated separately; the argument in this situation is
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usually referred to as the method of stationary phase. The points x0

for which Φ′(x0) = 0 are called the critical points.

Our first application will be to the asymptotic behavior of the gamma
function Γ, given by Stirling’s formula. This formula will be valid in any
sector of the complex plane that omits the negative real axis. For any
δ > 0 we set Sδ = {s : | arg s| ≤ π − δ}, and denote by log s the principal
branch of the logarithm that is given in the plane slit along the negative
real axis.

Theorem 2.3 If |s| → ∞ with s ∈ Sδ, then

(11) Γ(s) = es log se−s

√
2π

s1/2

(
1 + O

(
1

|s|1/2

))
.

Remark. With a little extra effort one can improve the error term to
O(1/|s|), and in fact obtain a complete asymptotic expansion in pow-
ers of 1/s; see Problem 2. Also, we note that (11) implies Γ(s) ∼√

2πss−1/2e−s, which is how Stirling’s formula is often stated.

To prove the theorem we first establish (11) in the right half-plane. We
shall show that the formula holds whenever Re(s) > 0, and in addition
that the error term is uniform on the closed half-plane, once we omit a
neighborhood of the origin (say |s| < 1). To see this, start with s > 0,
and write

Γ(s) =
∫ ∞

0

e−xxs dx

x
=
∫ ∞

0

e−x+s log x dx

x
.

Upon making the change of variables x 	→ sx, the above equals∫ ∞

0

e−sx+s log sx dx

x
= es log se−s

∫ ∞

0

e−sΦ(x) dx

x
,

where Φ(x) = x− 1 − log x. By analytic continuation this identity con-
tinues to hold, and we have when Re(s) > 0,

Γ(s) = es log se−sI(s)

with

I(s) =
∫ ∞

0

e−sΦ(x) dx

x
.

It now suffices to see that

(12) I(s) =
√

2π
s1/2

+O

(
1
|s|

)
for Re(s) > 0.
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Observe first that Φ(1) = Φ′(1) = 0, Φ′′(x) = 1/x2 > 0 whenever
0 < x <∞, and Φ′′(1) = 1. Thus Φ is convex, attains its minimum at
x = 1, and is positive.

We apply the complex version of the Laplace method, Proposition 2.2,
in this situation. Here the critical point is x0 = 1 and ψ(x) = 1/x.
We choose for convenience the interval [a, b] to be [1/2, 2]. Then for∫ b

a
e−sΦ(x)ψ(x) dx we get the asymptotic (12). It remains to bound the

error terms, those corresponding to integration over [0, 1/2], and [2,∞).
Here the device of integration by parts, which has served us so well, can
be applied again. Indeed, since Φ′(x) = 1 − 1/x, we have∫ 1/2

ε

e−sΦ(x) dx

x
= −1

s

∫ 1/2

ε

d

dx

(
e−sΦ(x)

) dx

Φ′(x)x

= −1
s

[
e−sΦ(x)

x− 1

]1/2

ε

− 1
s

∫ 1/2

ε

e−sΦ(x) dx

(x− 1)2
.

Noting that Φ(ε) → +∞ as ε→ 0, and |e−sΦ(x)| ≤ 1, we find in the limit
that ∫ 1/2

0

e−sΦ(x) dx

x
=

2
s
e−sΦ(1/2) − 1

s

∫ 1/2

0

e−sΦ(x) dx

(x− 1)2
.

Thus the left-hand side is O(1/|s|) in the half-plane Re(s) ≥ 0.
The integral

∫∞
2
e−sΦ(x) dx

x is treated analogously, once we note that∫∞
2

(x− 1)−2 dx converges.
Since these estimates are uniform, (12) and thus (11) are proved for

Re(s) ≥ 0, |s| → ∞.

To pass from Re(s) ≥ 0 to Re(s) ≤ 0, s ∈ Sδ, we record the following
fact about the principal branch of log s: whenever Re(s) ≥ 0, s = σ + it,
t �= 0, then

log(−s) =
{

log s− iπ if t > 0,
log s+ iπ if t < 0.

Hence if G(s) = es log se−s, Re(s) ≥ 0, t �= 0, then

(13) G(−s)−1 =
{
es log se−se−siπ if t > 0,
es log se−sesiπ if t < 0.

Next,

(14) Γ(s)Γ(−s) =
π

−s sinπs
,
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which follows from the fact that Γ(s)Γ(1 − s) = π/ sinπs, and
Γ(1 − s) = −sΓ(−s) (see Theorem 1.4 and Lemma 1.2 in Chapter 6).
The combination of (13) and (14), together with the fact that for large
s,
(
1 + O(1/|s|1/2)

)−1
= 1 + O(1/|s|1/2), allows us then to extend (11)

to the whole sector Sδ , thereby completing the proof of the theorem.

3 The Airy function

The Airy function appeared first in optics, and more precisely, in the
analysis of the intensity of light near a caustic; it was an important early
instance in the study of asymptotics of integrals, and it continues to arise
in a number of other problems. The Airy function Ai is defined by

(15) Ai(s) =
1
2π

∫ ∞

−∞
ei(x3/3+sx) dx, with s ∈ R.

Let us first see that because of the rapid oscillations of the integrand as
|x| → ∞, the integral converges and represents a continuous function of
s. In fact, note that

1
i(x2 + s)

d

dx

(
ei(x3/3+sx)

)
= ei(x3/3+sx),

so if a ≥ 2|s|1/2, we can write the integral
∫ R

a
ei(x3/3+sx) dx as

(16)
∫ R

a

1
i(x2 + s)

d

dx

(
ei(x3/3+sx)

)
dx.

We may now integrate by parts and let R→ ∞, to see that the integral
converges uniformly, and that as a result

∫∞
a
ei(x3/3+sx) dx is also con-

tinuous for |s| ≤ a2/4. The same argument works for the integral from
−∞ to −a and our assertion regarding Ai(s) is established.

A better insight into Ai(s) is given by deforming the contour of inte-
gration in (15). A choice of an optimal contour will appear below, but
for now let us notice that as soon as we replace the x-axis of integration
in (15) by the parallel line Lδ = {x+ iδ, x ∈ R}, δ > 0, matters improve
dramatically.

In fact, we may apply the Cauchy theorem to f(z) = ei(z3/3+sz) over
the rectangle γR shown in Figure 3.

One observes that f(z) = O(e−δx2
) on Lδ, while f(z) = O(e−yR2

) on
the vertical sides of the rectangle. Thus since

∫ δ

0
e−yR2

dy → 0 as
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−R R

z = x+ iδ

Lδ

Figure 3. The line Lδ and the contour γR

R→ ∞, we see that

Ai(s) =
1
2π

∫
Lδ

ei(z3/3+sz) dz.

Now the majorization f(z) = O(e−δx2
) continues to hold for each com-

plex s, and hence because of the (rapid) convergence of the integral, Ai(s)
extends to an entire function of s.

We note next that Ai(s) satisfies the differential equation

(17) Ai′′(s) = sAi(s).

This simple and natural equation helps to explain the ubiquity of the
Airy function. To prove (17) observe that

Ai′′(s) − sAi(s) =
1
2π

∫
Lδ

(−z2 − s)ei(z3/3+sz) dz.

But −(z2 + s)ei(z3/3+sz) = i d
dz (ei(z3/3+sz)), so

Ai′′(s) − sAi(s) =
i

2π

∫
Lδ

d

dz
(f(z)) dz = 0,

since f(z) = ei(z3/3+sz) vanishes as |z| → ∞ along Lδ .

We now turn to our main problem, the asymptotics of Ai(s) for large
(real) values of s. The differential equation (17) shows us that we may
expect different behaviors of the Airy function when |s| is large, depend-
ing on whether s is positive or negative. To see this, we compare the
equation with a simple analogue

(18) y′′(s) = Ay(s),
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where A is a large constant, with A positive when considering s positive
and A negative in the other case. The solutions of (18) are of course e

√
As

and e−
√

As, the first growing rapidly, and the second decreasing rapidly
as s→ ∞, if A > 0. A glance at the integration by parts following (16)
shows that Ai(s) remains bounded when s→ ∞. So the comparison
with e

√
As must be dismissed, and we might reasonably guess that Ai(s)

is rapidly decreasing in this case. When s < 0 we take A < 0 in (18). The
exponentials e

√
As and e−

√
As are now oscillating, and we can therefore

presume that Ai(s) should have an oscillatory character as s→ −∞.

Theorem 3.1 Suppose u > 0. Then as u→ ∞,

(i) Ai(−u) = π−1/2u−1/4 cos(2
3u

3/2 − π
4 )(1 +O(1/u3/4)).

(ii) Ai(u) =
1

2π1/2
u−1/4e−

2
3 u3/2

(1 +O(1/u3/4)).

To consider the first case, we make the change of variables x 	→ u1/2x
in the defining integral with s = −u. This gives

Ai(−u) = u1/2I−(u3/2),

where

(19) I−(t) =
1
2π

∫ ∞

−∞
eit(x3/3−x) dx.

Now write

I−(s) =
1
2π

∫ ∞

−∞
e−sΦ(x) dx,

where Φ(x) = Φ−(x) = x3/3 − x, and we shall apply Proposition 2.2,
which in this case, since s is purely imaginary, is the method of stationary
phase. Note that Φ′(x) = x2 − 1, so there are two critical points, x0 =
±1; observe that Φ′′(x) = 2x; also Φ(±1) = ∓2/3.

We break up the range of integration in (19) into two intervals [−2, 0]
and [0, 2] each containing one critical point, and two complementary
integrals, (−∞,−2] and [2,∞).

Now we apply Proposition 2.2 to the interval [0, 2] with s = −it, x0 = 1
ψ = 1/2π, Φ(1) = −2/3, Φ′′(1) = 2, and get a contribution of

1
2
√
π
e−i 2

3 t

(
1

(−it)1/2
+O

(
1
|t|

))
,
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in view of (8). Similarly the integral over [−2, 0] contributes

1
2
√
π
ei 2

3 t

(
1

(it)1/2
+O

(
1
|t|

))
.

Finally, consider the complementary integrals. The first is∫ −2

−∞
eitΦ(x) dx = lim

N→∞

∫ −2

−N

eitΦ(x) dx = lim
N→∞

1
it

∫ −2

−N

d

dx

(
eitΦ(x)

) dx

Φ′(x)
,

where Φ′(x) = x2 − 1. So an integration by parts shows that this is
O(1/|t|). The integral over [2,∞) is treated similarly. Adding these four
contributions, and inserting them in the identity Ai(−u) = u1/2I−(u3/2),
proves conclusion (i) of the theorem.6

To deal with the conclusion (ii) of the theorem, we make the change
of variables x 	→ u1/2x in the integral (15), with s = u. This gives us, for
u > 0,

Ai(u) = u1/2I+(u3/2),

where

(20) I+(s) =
1
2π

∫ ∞

−∞
e−sF (x) dx

and F (x) = −i(x3/3 + x). Now when s→ ∞, the integrand in (20) again
oscillates rapidly, but here in distinction to the previous case, there is no
critical point on the real axis, since the derivative of x3/3 + x does not
vanish. A repeated integration by parts argument (such as we have used
before) shows that actually the integral I+(s) has fast decay as s→ ∞.
But what is the exact nature and order of this decrease? To answer this
question, we would have to take into account the precise cancellations
inherent in (20), and doing this by the above method does not seem
feasible.

A better way is to follow the guiding principle used in the asymptotics
of the Bessel function, and to deform the line of integration in (20) to a
contour on which the imaginary part of F (z) vanishes; having done this,
one might then hope to apply Laplace’s method, Proposition 2.1, to find
the true asymptotic behavior of I+(s), as s→ ∞.

We describe the idea in the more general situation in which we assume
only that F (z) is holomorphic. To follow the approach suggested, we
seek a contour Γ so that:

6An alternative derivation of this conclusion can be given as a consequence of the
relation of the Airy function with the Bessel functions. See Problem 3 below.
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(a) Im(F ) = 0 on Γ.

(b) Re(F ) has a minimum on Γ at some point z0, and this function
is non-degenerate in the sense that the second derivative of Re(F )
along Γ is strictly positive at z0.

Conditions (a) and (b) imply of course that F ′(z0) = 0. If as above,
F ′′(z0) �= 0, then there are two curves Γ1 and Γ2 passing through z0
which are orthogonal, so that F |Γi

is real for i = 1, 2, with Re(F ) re-
stricted to Γ1 having a minimum at z0; and Re(F ) restricted to Γ2 hav-
ing a maximum at z0 (see Exercise 2 in Chapter 8). We therefore try to
deform our original contour of integration to Γ = Γ1. This approach is
usually referred to as the method of steepest descent, because at z0
the function −Re(F (z)) has a saddle point, and starting at this point and
following the path of Γ1, one has the greatest decrease of this function.

Let us return to our special case, F (z) = −i(z3/3 + z). We note that{
Re(F ) = x2y − y3/3 + y,
Im(F ) = −x3/3 + xy2 − x.

We observe also that F ′(z) = −i(z2 + 1), so we have two non-real critical
points z0 = ±i at which F ′(z0) = 0. If we choose z0 = i, then the two
curves passing through this point where Im(F ) = 0 are

Γ1 = {(x, y) : y2 = x2/3 + 1} and Γ2 = {(x, y) : x = 0}.

On Γ2, the function Re(F ) clearly has a maximum at the point z0 = i,
and so we reject this curve. We choose Γ = Γ1, which is a branch of a hy-
perbola, and which can be written as y = (x2/3 + 1)1/2; it is asymptotic
to the rays z = reiπ/6, and z = rei5π/6 at infinity. See Figure 4.

z = reiπ/6
z = reiπ/6 i

0

Γ

Figure 4. The curve of steepest descent
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Next, we see that

(21)
1
2π

∫ ∞

−∞
e−sF (x) dx =

1
2π

∫
Γ

e−sF (z) dz.

This identity is justified by applying the Cauchy theorem to e−sF (z)

on the contour ΓR that consists of four arc segments: the parts of the
real axis and Γ that lie inside the circle of radius R, and the two arcs
of this circle joining the axis with Γ. Since in this region e−sF (z) =
O(e−cyx2

) as x→ ±∞, the contributions of the two arcs of the circle are
O(
∫ π

0
e−cR2 sin θ dθ) = O(1/R), and letting R→ ∞ establishes (21).

We now observe that on Γ

Φ(x) = Re(F ) = y(x2 − y2/3 + 1) = (
8
9
x2 +

2
3
)(x2/3 + 1)1/2,

since y2 = x2/3 + 1 there. Also, on Γ we have that dz = dx+ idy =
dx+ i(x/3)(x2/3 + 1)−1/2dx. Thus,

(22)
1
2π

∫
Γ

e−sF (z) dz =
1
2π

∫ ∞

−∞
e−sΦ(x) dx,

in view of the fact that Φ(x) is even, while x(x2/3 + 1)−1/2 is odd.
We note next that since (1 + u)1/2 = 1 + u/2 +O(u2) as u→ 0,

Φ(x) = (
8
9
x2 +

2
3
) +

2
3

1
2
x2

3
+O(x4) = x2 +

2
3

+O(x4),

and so Φ′′(0) = 2. We now apply Proposition 2.1 to estimate the main
part of the right-hand side of (22), by

1
2π

∫ c

−c

e−sΦ(x) dx,

where c is a small positive constant. Since Φ(0) = 2/3, Φ′′(0) = 2, and
ψ(0) = 1/2π, we obtain that this term contributes

e−
2
3 s

[
1

2π1/2

1
s1/2

+O

(
1
s

)]
.

The term
∫∞

c
e−sΦ(x) dx is dominated by e−2s/3

∫∞
c
e−c1sx2

dx, which is
O(e−2s/3e−δs) for some δ > 0, as soon as c > 0. A similar estimate holds
for
∫ −c

−∞ e−sΦ(x) dx. Altogether, then,

I+(s) = e−
2
3 s

[
1

2π1/2

1
s1/2

+O

(
1
s

)]
as s→ ∞,

and this gives the desired asymptotic (ii) for the Airy function.
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4 The partition function

Our last illustration of the techniques developed in this appendix is in
their application to the partition function p(n), which was discussed in
Chapter 10. We derive for it the main term of the remarkable asymptotic
formula of Hardy-Ramanujan.

Theorem 4.1 If p denotes the partition function, then

(i) p(n) ∼ 1
4
√

3n
eKn1/2

as n→ ∞, where K = π
√

2
3 .

(ii) A much more precise assertion is that

p(n) =
1

2π
√

2
d

dn

(
eK(n− 1

24 )1/2

(n− 1
24)1/2

)
+O(e

K
2 n1/2

).

Note. Observe that (n− 1
24)1/2 − n1/2 = O(n−1/2), by the mean-

value theorem; hence eK(n− 1
24 )1/2

= eKn1/2
(1 + O(n−1/2)), thus

eK(n− 1
24 )1/2 ∼ eKn1/2

, as n→ ∞. Of course, clearly (n− 1
24 )1/2 ∼ n1/2,

and in particular (ii) implies (i).

We shall discuss first, in a more general setting, how we might derive
the asymptotic behavior of a sequence {Fn} from the analytic properties
of its generating function F (w) =

∑∞
n=0 Fnw

n. Assuming for the sake of
simplicity that

∑
Fnw

n has the unit disc as its disc of convergence, we
can set forth the following heuristic principle: the asymptotic behavior
of Fn is determined by the location and nature of the “singularities” of
F on the unit circle, and the contribution to the asymptotic formula
due to each singularity corresponds in magnitude to the “order” of that
singularity.

A very simple example in which this principle is unambiguous and can
be verified occurs when F is meromorphic in a larger disc, but has only
one singularity on the circle, a pole of order r at the point w = 1. Then
there is a polynomial P of degree r − 1 so that Fn = P (n) + O(e−εn) as
n→ ∞, for some ε > 0. In fact,

∑∞
n=0 P (n)wn is a good approximation

to F (w) near w = 1; it is the principal part of the pole of F . (See also
Problem 4.)

For the partition function the analysis is not as simple as this ex-
ample, but the principle stated above is still applicable when properly
interpreted. To this task we now turn.

We recall the formula
∞∑

n=0

p(n)wn =
∞∏

n=1

1
1 − wn

,
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established in Theorem 2.1, Chapter 10. This identity implies that the
generating function is holomorphic in the unit disc. In what follows, it
will be convenient to pass from the unit disc to the upper half-plane by
writing w = e2πiz, z = x+ iy, and taking y > 0. We therefore have

∞∑
n=0

p(n)e2πinz = f(z),

with

f(z) =
∞∏

n=1

1
1 − e2πinz

,

and

(23) p(n) =
∫

γ

f(z)e−2πinz dz.

Here γ is the segment in the upper half-plane joining −1/2 + iδ to
1/2 + iδ, with δ > 0; the height δ will be fixed later in terms of n.

To proceed further, we look first at where the main contribution to
the integral (23) might be, in terms of the relative size of f(x+ iy), as
y → 0. Notice that f is largest near z = 0. This is because
|f(x+ iy)| ≤ f(iy), and moreover f(iy) increases as y decreases, in view
of the fact that the coefficients p(n) are positive. Alternatively, we ob-
serve that each factor 1 − e2πinz, appearing in the product for f , vanishes
as z → 0, but the same is true for any other point (mod 1) on the real
axis. Thus in analogy with the simple example considered above, we seek
an elementary function f1, which has much the same behavior as f at
z = 0, and try to replace f by f1 in (23).

It is here that we are very fortunate, because the generating function
is just a variant of the Dedekind eta function,

η(z) = eiπz/12

∞∏
n=1

(1 − e2πinz).

From this, it is obvious that

f(z) = e
iπz
12 (η(z))−1.

(Incidentally, the fraction 1/12 arising above will explain the occurrence
of the fraction 1/24 in the asymptotic formula for p(n).)
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Since η satisfies the functional equation η(−1/z) =
√
z/i η(z) (see

Proposition 1.9 in Chapter 10), it follows that

(24) f(z) =
√
z/i e

iπ
12z e

iπz
12 f(−1/z).

Notice also that if z is appropriately restricted and z → 0, then
Im(−1/z) → ∞, from which it follows that f(−1/z) → 1 rapidly, because

(25) f(z) = 1 +O(e−2πy), z = x+ iy, y ≥ 1.

Thus it is natural to choose f1(z) =
√
z/i e

iπ
12z e

iπz
12 as the function which

approximates well the generating function f(z) (at z = 0), and write
(because of (24))

p(n) = p1(n) +E(n),

with 
p1(n) =

∫
γ

√
z/i e

iπ
12z e

iπz
12 e−2πinz dz,

E(n) =
∫

γ

√
z/i e

iπ
12z e

iπz
12 e−2πinz(f(−1/z)− 1) dz.

We first take care of the error term E(n), and in doing so we specify
γ by choosing its height in terms of n. In estimating E(n) we replace its
integrand by its absolute value and note that if z ∈ γ, then

(26)
∣∣∣√z/i e

iπ
12z e

iπz
12 e−2πinz

∣∣∣ ≤ ce2πnδe
π
12

δ
δ2+x2 ,

since z = x+ iy, and Re(i/z) = δ/(δ2 + x2).
On the other hand, we can make two estimates for f(−1/z)− 1. The

first arises from (25) by replacing z by −1/z, and gives

(27) |f(−1/z)− 1| ≤ ce
−2π δ

δ2+x2 if δ
δ2+x2 ≥ 1.

For the second, we observe that |f(z)| ≤ f(iy) ≤ Ce
π

12y , when y ≤ 1,
because of the functional equation (24), and hence

(28) |f(−1/z)− 1| ≤ O
(
e

π
12

δ2+x2
δ

)
= O

(
e

π
48δ

)
if δ

δ2+x2 ≤ 1, since |x| ≤ 1/2.
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Therefore in the integral defining E(n) we use (26) and (27) when
δ

δ2+x2 ≥ 1, and (26) and (28) when δ
δ2+x2 ≤ 1. The first leads to a con-

tribution of O(e2πnδ), since 2π > π/12. The second gives a contribution
of O(e2πnδe

π
48δ ). Hence E(n) = O(e2πnδe

π
48δ ), and we choose δ so as to

minimize the right-hand side, that is, 2πnδ = π
48δ ; this means we take

δ = 1
4
√

6 n1/2 , and we get

E(n) = O
(
e

4π
4
√

6
n1/2
)

= O
(
e

K
2 n1/2

)
,

which is the desired size of the error term.

We turn to the main term p1(n). To simplify later calculations we
“improve” the contour γ by adding to it two small end-segments; these
are the segment joining −1/2 to −1/2 + iδ and that joining 1/2 + iδ to
1/2. We call this new contour γ′ (see Figure 5).

γ

γ′

−1/2 1/2

1/2−1/2

Figure 5. γ and the improved contour γ′

Notice that since
√
z/i e

iπ
12z is O(1) on the two added segments (for

the integral defining p1(n)), the modification contributes O(e2πnδ) =

O(e
2π
4
√

6
n1/2

) = O(e
K
4 n1/2

), which is even smaller than the allowed error,
and therefore can be incorporated in E(n). So without introducing fur-
ther notation we will rewrite p1(n) replacing the contour γ by γ′ in the
integration defining p1, namely

(29) p1(n) =
∫

γ′

√
z/i e

iπ
12z e

iπz
12 e−2πinz dz.
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Next we simplify the triad of exponentials appearing in (29) by making
a change of variables z 	→ µz so that their combination takes the form

eAi( 1
z−z).

This can be achieved under the two conditions A = 2πµ(n− 1
24 ) and

A = π
12µ , which means that

A =
π√
6

(n− 1
24

)1/2 and µ =
1

2
√

6
(n− 1

24
)−1/2.

Making the indicated change of variables we now have

(30) p1(n) = µ3/2

∫
Γ

e−sF (z)
√
z/i dz,

with F (z) = i(z − 1/z), s = π√
6

(n− 1
24 )1/2. The curve Γ (see Figure 6).

is now the union of three segments [−an,−an + iδ′], [−an + iδ′, an + iδ′],
and [an + iδ′, an]; we can write Γ = µ−1γ′.

−an an

−an + iδ′ an + iδ′
Γ

Figure 6. The curve Γ

Here an = 1
2µ

−1 =
√

6 (n− 1
24)1/2 ≈ n1/2, while δ′ = δµ−1 =

2
√

6
4
√

6n1/2 (n− 1
24)1/2 ∼ 1/2, as n→ ∞.

We apply the method of steepest descent to the integral (30). In doing
this, we note that F (z) = i(z − 1/z) has one (complex) critical point
z = i, in the upper half-plane. Moreover, the two curves passing through
i on which F is real are: the imaginary axis, on which F has a maximum
at z = i, which we reject, and the unit circle, on which F has a minimum
at z = i. Thus using Cauchy’s theorem we replace the integration on Γ
by the integration over our final curve Γ∗, which consists of the segment
[−an,−1], [1, an], together with the upper semicircle joining −1 to 1.
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Γ∗

Γ

i

Figure 7. The final curve Γ∗

We therefore have

p1(n) = µ3/2

∫
Γ∗
e−sF (z)

√
z/i dz.

The contributions on the segments [−an,−1] and [1, an] are relatively
very small, because on the real axis the exponential has absolute value
1, and hence the integrand is bounded by sup|z|≤an

|z|1/2, and this leads

to two terms which are O(a3/2
n µ3/2) = O(1).

Finally, we come to the principal part, which is the integration over the
semicircle, taken with the orientation on the figure. Here we write z =
eiθ, dz = ieiθ dθ. Since i(z − 1/z) = −2 sin θ, this gives a contribution

−µ3/2

∫ π

0

e2s sin θei3θ/2
√
i dθ = µ3/2

∫ π/2

−π/2

e2s cos θ(cos(3θ/2) + i sin(3θ/2))dθ.

In applying Proposition 2.1, Laplace’s method, we take Φ(θ) = − cos θ,
θ0 = 0, so Φ(θ0) = −1, Φ′′(θ0) = 1 and we choose ψ(θ) = cos(3θ/2) +
i sin(3θ/2), so that ψ(θ0) = 1. Therefore, the above contributes

µ3/2e2s

√
2π

(2s)1/2

(
1 +O(s−1/2)

)
.

Now since s = π√
6

(n− 1
24 )1/2, 2π√

6
= π
√

2
3 = K, and µ =

√
6

12 (n− 1
24 )−1/2,

we obtain

p(n) =
1

4n
√

3
eK n1/2 (

1 +O
(
n−1/4

))
,



340 Appendix A: ASYMPTOTICS

and the first conclusion of the theorem is established.

To obtain the more exact conclusion (ii), we retrace our steps and use
an additional device, which allows us to evaluate rather precisely the key
integral. With p1(n) defined by (29), which is an integral taken over
γ′ = γ′n, we write

p1(n) =
d

dn
q(n) + e(n),

where

q(n) =
1
2π

∫
γ′

(z/i)−1/2e
iπ
12z e

iπz
12 e−2πinz dz,

and e(n) is the term due to the variation of the contour γ′ = γ′n, when
forming the derivative in n. By Cauchy’s theorem this is easily seen to
be dominated by O(e2πnδ), which we have seen is O(e

K
4 n1/2

), and can be
subsumed in the error term. To analyze q(n), we proceed as before, first
making the change of variables z 	→ µz, and then replacing the resulting
contour Γ by Γ∗. As a consequence, we have

(31) q(n) =
µ1/2

2π

∫
Γ∗
e−sF (z)(z/i)−1/2 dz,

with F (z) = i(z − 1/z), s = π√
6

(n− 1
24 )1/2, and µ = 1

2
√

6
(n− 1

24 )−1/2.
Now the two segments [−an,−1] and [1, an] of the contour Γ∗ make

harmless contributions to d
dnq(n), since F is purely imaginary on the real

axis. Indeed, they yield terms which are O(a1/2
n µ1/2) = O(1).

The main part of (31) is the term arising from the integration on the
semicircle. Thus setting z = eiθ, dz = ieiθ dθ, and i(z − 1/z) = −2 sin θ,
it equals

−µ
1/2

2π

∫ π

0

e2s sin θeiθ/2i3/2 dθ =
µ1/2

2π

∫ π/2

−π/2

e2s cos θ(cos(θ/2) + i sin(θ/2))dθ

=
µ1/2

2π

∫ π/2

−π/2

e2s cos θ cos(θ/2)dθ,

where we have used the fact that the integral
∫ π/2

−π/2
e2s cos θ sin(θ/2) dθ

vanishes since the integrand is odd.
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Now cos θ = 1 − 2(sin θ/2)2, so setting x = sin(θ/2) we see that the
above integral becomes

µ1/2e2s

π

∫ √
2

2

−
√

2
2

e−4sx2
dx.

However∫ √
2

2

−
√

2
2

e−4sx2
dx =

∫ ∞

−∞
e−4sx2

dx+O

(∫ ∞
√

2
2

e−4sx2
dx

)

=
√
π

2s1/2
+O(e−2s),

and also

d

ds

(∫ √
2

2

−
√

2
2

e−4sx2
dx

)
=

d

ds

( √
π

2s1/2

)
+O(e−2s).

Gathering all the error terms together, we find

p(n) =
d

dn

(
µ1/2 e

2s

π

√
π

2s1/2

)
+O(e

K
2 n1/2

).

Since s = π√
6
(n− 1

24)1/2, µ =
√

6
12 (n− 1

24 )−1/2, and K = π
√

2
3 , this is

p(n) =
1

2π
√

2
d

dn

(
eK(n− 1

24 )1/2

(n− 1
24)1/2

)
+O(e

K
2 n1/2

),

and the theorem is proved.

5 Problems

1. Let η be an indefinitely differentiable function supported in a finite interval, so
that η(x) = 1 for x near 0. Then, if m > −1 and N > 0,∫ ∞

0

e−sxxmη(x) dx = s−m−1Γ(m+ 1) +O(s−N )

for Re(s) ≥ 0, |s| → ∞.

(a) Consider first the case −1 < m ≤ 0. It suffices to see that∫ ∞

0

e−sxxm(1 − η(x)) dx = O(s−N ),

and this can be done by repeated integration by parts since

e−sx = (−1)Ns−N
(

d
dx

)N
(e−sx).
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(b) To extend this to all m, find an integer k so that k − 1 < m ≤ k, write

∫ [(
d

dx

)k

(xm)

]
e−sxη(x) dx = ck,ms

−m+k−1 +O(s−N ),

and integrate by parts k times.

2. The following is a more precise version of Stirling’s formula. There are real
constant a1 = 1/12, a2, . . ., an, . . ., so that for every N > 0

Γ(s) = es log se−s

√
2π

s1/2

(
1 +

N∑
j=1

ajs
−j +O(s−N )

)
when s ∈ Sδ.

This can be proved by using the results of Problem 1 in place of Proposition 1.3.

3. The Bessel functions and Airy function have the following power series expan-
sions:

Jν(x)=
(x

2

)ν
∞∑

m=0

(−1)m
(

x2

4

)m

m!Γ(ν +m+ 1)
,

Ai(−x)=
1

π

∞∑
n=0

xn

n!
sin(2π(n+ 1)/3)3n/3−2/3Γ(n/3 + 1/3).

(a) From this, verify that when x > 0,

Ai(−x) =
x1/2

3

(
J1/3

(
2

3
x3/2

)
+ J−1/3

(
2

3
x3/2

))
.

(b) The function Ai(x) extends to an entire function of order 3/2.

[Hint: For (b), use (a), or alternatively, apply Problem 4 in Chapter 5 to the power
series for Ai. Compare also with Problem 1, Chapter 4.]

4. Suppose F (z) =
∑∞

n=0 Fnw
n is meromorphic in a region containing the closed

unit disc, and the only poles of F are on the unit circle at the points α1, . . . , αk,
and their orders are r1, . . . , rk respectively. Then for some ε > 0

Fn =

k∑
j=1

Pj(n) +O(e−εn) as n→ ∞.

Here

Pj(n) =
1

(rj − 1)!

(
d

dw

)rj−1 [
(w − αj)

rjw−n−1F (w)
]
w=αj

.
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Note that each Pj is of the form Pj(n) = Aj(α
−1
j n)rj−1 +O(nrj−2).

To prove this, use the residue formula (Theorem 1.4, Chapter 3).

5.∗ The one shortcoming in our derivation of the asymptotic formula for p(n) arose

from the fact that while f1(z) =
√
z/i e

iπ
12z e

iπz
12 is a good approximation to the

generating function f(z) near z = 0, this fails near other points on the real axis,
since f1 is regular there, but f is not.

However, using the transformation law (24) and the identity f(z + 1) = f(z),
one can derive the following generalization of (24): whenever p/q is a rational
number in lowest form (so p and q are relatively prime) then

f

(
z − p

q

)
= ωp/q

√
zq

i
e

iπ
12zq2 e−

iπz
12 f

(
− 1

zq2
− p′

q

)
,

where pp′ = 1 mod q. Here ωp/q is an appropriate 24th root of unity. This formula
leads to an analogous fp/q, approximating f at z = p/q.

From this one can obtain for each p/q a contribution of the form

cp/q
1

2π
√

2

d

dn

(
e

K
q

(n− 1
24 )1/2

(n− 1
24

)1/2

)

to the asymptotic formula for p(n). When suitably modified, the resulting series,
summed over all proper fractions p/q in [0, 1), actually converges and gives an
exact formula for p(n).



Appendix B: Simple Connectivity
and Jordan Curve Theorem

Jordan was one of the precursors of the theory of func-
tions of a real variable. He introduced in this part of
analysis the capital notion of functions of bounded
variation. Not less celebrated is his study of curves,
universally called Jordan curves, which curves sepa-
rate the plane in two distinct regions. We also owe
him important propositions regarding the measure of
sets that have led the way to numerous modern re-
searches.

E. Picard, 1922

The notion of simple connectivity is at the source of many basic and
fundamental results in complex analysis. To clarify the meaning of this
important concept, we have gathered in this appendix some further in-
sights into the properties of simply connected sets. Closely tied to the
idea of simple connectivity is the notion of the “interior” of a simple
closed curve. The theorem of Jordan states that this interior is well-
defined and is simply connected. We prove here the special case of this
theorem for curves which are piecewise-smooth.

Recall the definition in Chapter 3, according to which a region Ω is
simply connected if any two curves in Ω with the same end-points are
homotopic. From this definition we deduced an important version of
Cauchy’s theorem which states that if Ω is simply connected and γ ⊂ Ω
is any closed curve, then

(1)
∫

γ

f(ζ) dζ = 0

whenever f is holomorphic in Ω. Here, we shall prove that a converse
also holds, therefore:

(I) A region Ω is simply connected if and only if it is holomorphi-
cally simply connected; that is, whenever γ ⊂ Ω is closed and f
holomorphic in Ω then (1) holds.

Besides this fundamental equivalence, which is analytic in nature, there
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are also topological conditions that can be used to describe simple con-
nectivity. In fact, the definition in terms of homotopies suggests that a
simply connected set has no “holes.” In other words, one cannot find a
closed curve in Ω that loops around points that do not belong to Ω. In the
first part of this appendix we shall also turn these intuitive statements
into tangible theorems:

(II) We show that a bounded region Ω is simply connected if and only
if its complement is connected.

(III) We define the winding number of a curve around a point, and prove
that Ω is simply connected if and only if no curve in Ω winds around
points in the complement of Ω.

In the second part of this appendix we return to the problem of curves
and their interior. The main question is the following: given a closed
curve Γ that does not intersect itself (it is simple), can we make sense
of the “region enclosed by Γ”? In other words, what is the “interior” of
Γ? Naturally, we may expect the interior to be open, bounded, simply
connected, and have Γ as its boundary. To solve this problem, at least
when the curve is piecewise-smooth, we prove a theorem that guarantees
the existence of a unique set which satisfies all the desired properties.
This is a special case of the Jordan curve theorem, which is valid in the
general case when the simple curve is assumed to be merely continuous.
In particular, our result leads to a generalization of Cauchy’s theorem in
Chapter 2 which we formulated for toy contours.

We continue to follow the convention set in Chapter 1 by using the term
“curve” synonymously with “piecewise-smooth curve,” unless stated oth-
erwise.

1 Equivalent formulations of simple connectivity

We first dispose of (I).

Theorem 1.1 A region Ω is holomorphically simply connected if and
only if Ω is simply connected.

Proof. One direction is simply the version of Cauchy’s theorem in
Corollary 5.3, Chapter 3. Conversely, suppose that Ω is holomorphically
simply connected. If Ω = C, then it is clearly simply connected. If Ω
is not all of C, recall that the Riemann mapping theorem still applies
(see the remark following its proof in Chapter 8), hence Ω is conformally
equivalent to the unit disc. Since the unit disc is simply connected, the
same must be true of Ω.
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Next, we turn to (II) and (III), which, as we mentioned, are both
precise formulations of the fact that a simply connected region cannot
have “holes.”

Theorem 1.2 If Ω is a bounded region in C, then Ω is simply connected
if and only if the complement of Ω is connected.

Note that we assume that Ω is bounded. If this is not the case, then the
theorem as stated does not hold, for example an infinite strip is simply
connected yet its complement consists of two components. However, if
the complement is taken with respect to the extended complex plane,
that is, the Riemann sphere, then the conclusion of the theorem holds
regardless of whether Ω is bounded or not.

Proof. We begin with the proof that if Ωc is connected, then Ω is
simply connected. This will be achieved by showing that Ω is holomor-
phically simply connected. Therefore, let γ be a closed curve in Ω and f
a holomorphic function on Ω. Since Ω is bounded, the set1

K = {z ∈ Ω : d(z,Ωc) ≥ ε}

is compact, and for sufficiently small ε, the set K contains γ. In an
attempt to apply Runge’s theorem (Theorem 5.7 in Chapter 2), we must
first show that the complement Kc of K is connected.

If this is not the case, then Kc is the disjoint union of two non-empty
open sets, say Kc = O1 ∪O2. Let

F1 = O1 ∩ Ωc and F2 = O2 ∩ Ωc.

Clearly, Ωc = F1 ∪ F2, so if we can show that F1 and F2 are disjoint,
closed, and non-empty, then we will conclude that Ωc is not connected,
thus contradicting the hypothesis in the theorem. Since O1 and O2 are
disjoint, so are F1 and F2. To see why F1 is closed, suppose {zn} is a
sequence of points in F1 that converges to z. Since Ωc is closed we must
have z ∈ Ωc, and since Ωc is at a finite distance from K, we deduce that
z ∈ O1 ∪O2. Now we observe that we cannot have z ∈ O2, for otherwise
we would have zn ∈ O2 for sufficiently large n because O2 is open, and
this contradicts the fact that zn ∈ F1 and O1 ∩ O2 = ∅. Hence z ∈ O1

and F1 is closed, as desired. Finally, we claim that F1 is non-empty.
If otherwise, O1 is contained in Ω. Select any point w ∈ O1, and since
w /∈ K, there exists z ∈ Ωc with |w − z| < ε, and the entire line segment
from w to z belongs to Kc. Since z ∈ O2 (because O1 ⊂ Ω), some point

1Here, d(z,Ωc) = inf{|z − w| : w ∈ Ωc} denotes the distance from z to Ωc.
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on the line segment [z, w] must belong to neither O1 nor O2, and this is
a contradiction. More precisely, if we set

t∗ = sup{0 ≤ t ≤ 1 : (1 − t)z + tw ∈ O2},

then 0 < t∗ < 1, and the point (1 − t∗)z + t∗w, which is not in K, cannot
belong to either O1 or O2 since these sets are open. Similar arguments
imply the same conclusions for F2, and we have reached the desired
contradiction. Thus Kc is connected.

Therefore, Runge’s theorem guarantees that f can be approximated
uniformly on K, and hence on γ, by polynomials. However,

∫
γ
P (z) dz =

0 whenever P is a polynomial, so in the limit we conclude that
∫

γ
f(z) dz =

0, as desired.

The converse result, that Ωc is connected whenever Ω is bounded and
simply connected, will follow from the notion of winding numbers, which
we discuss next.

Winding numbers

If γ is a closed curve in C and z a point not lying on γ, then we may
calculate the number of times the curve γ winds around z by looking at
the change of argument of the quantity ζ − z as ζ travels on γ. Every time
γ loops around z, the quantity (1/2π) arg(ζ − z) increases (or decreases)
by 1. If we recall that logw = log |w| + i argw, and denote the beginning
and ending points of γ by ζ1 and ζ2, then we may guess that the quantity

1
2πi

[log(ζ1 − z) − log(ζ2 − z)] , which “equals”
1

2πi

∫
γ

dζ

ζ − z
,

computes precisely the number of times γ loops around ζ.
These considerations lead to the following precise definition: the wind-

ing number of a closed curve γ around a point z /∈ γ is

Wγ(z) =
1

2πi

∫
γ

dζ

ζ − z
.

Sometimes, Wγ(z) is also called the index of z with respect to γ.
For example, if γ(t) = eikt, 0 ≤ t ≤ 2π, is the unit circle traversed k

times in the positive direction (with k ∈ N), then Wγ(0) = k. In fact,
one has

Wγ(z) =
{
k if |z| < 1,
0 if |z| > 1.
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Similarly, if γ(t) = e−ikt, 0 ≤ t ≤ 2π, is the unit circle traversed k times
in the negative direction, then we find that Wγ(z) = −k in the interior
of the disc, and Wγ(z) = 0 in its exterior.

Note that, if γ denotes a positively oriented toy contour, then

Wγ(z) =
{

1 if z ∈ interior of γ,
0 if z ∈ exterior of γ.

In general we have the following natural facts about winding numbers.

Lemma 1.3 Let γ be a closed curve in C.

(i) If z /∈ γ, then Wγ(z) ∈ Z.

(ii) If z and w belong to the same open connected component in the
complement of γ, then Wγ(z) = Wγ(w).

(iii) If z belongs to the unbounded connected component in the comple-
ment of γ, then Wγ(z) = 0.

Proof. To see why (i) is true, suppose that γ : [0, 1] → C is a parametriza-
tion for the curve, and let

G(t) =
∫ t

0

γ′(s)
γ(s) − z

ds.

Then G is continuous and, except possibly at finitely many points, it
is differentiable with G′(t) = γ′(t)/(γ(t) − z). This implies that, except
possibly at finitely many points, the derivative of the continuous function
H(t) = (γ(t) − z)e−G(t) is zero, and hence H must be constant. Putting
t = 0 and recalling that γ is closed, so that γ(0) = γ(1), we find

1 = eG(0) = c(γ(0)− z) = c(γ(1)− z) = eG(1).

Therefore, G(1) is an integral multiple of 2πi, as desired.
For (ii), we simply note that Wγ(z) is a continuous function of z /∈ γ

that is integer-valued, so it must be constant in any open connected
component in the complement of γ.

Finally, one observes that lim|z|→∞Wγ(z) = 0, and, combined with (ii),
this establishes (iii).

We now show that the notion of a bounded simply connected set Ω
may be understood in the following sense: no curve in Ω winds around
points in Ωc.
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Theorem 1.4 A bounded region Ω is simply connected if and only if
Wγ(z) = 0 for any closed curve γ in Ω and any point z not in Ω.

Proof. If Ω is simply connected and z /∈ Ω, then f(ζ) = 1/(ζ − z) is
holomorphic in Ω, and Cauchy’s theorem gives Wγ(z) = 0.

For the converse, it suffices to prove that the complement of Ω is
connected (Theorem 1.2). We argue by contradiction, and construct an
explicit closed curve γ in Ω and find a point w so that Wγ(w) �= 0.

If we suppose that Ωc is not connected, then we may write
Ωc = F1 ∪ F2 where F1, F2 are disjoint, closed, and non-empty. Only
one of these sets can be unbounded, so that we may assume that F1 is
bounded, thus compact. The curve γ will be constructed as part of the
boundary of an appropriate union of squares.

Lemma 1.5 Let w be any point in F1. Under the above assumptions,
there exists a finite collection of closed squares Q = {Q1, . . . , Qn} that
belong to a uniform grid G of the plane, and are such that:

(i) w belongs to the interior of Q1.

(ii) The interiors of Qj and Qk are disjoint when j �= k.

(iii) F1 is contained in the interior of
⋃n

j=1Qj .

(iv)
⋃n

j=1Qj is disjoint from F2.

(v) The boundary of
⋃n

j=1Qj lies entirely in Ω, and consists of a finite
union of disjoint simple closed polygonal curves.

Assuming this lemma for now, we may easily finish the proof of the
theorem. The boundary ∂Qj of each square is equipped with the positive
orientation. Since w ∈ Q1, and w /∈ Qj for all j > 1, we have

(2)
n∑

j=1

1
2πi

∫
∂Qj

dζ

ζ − w
= 1.

If γ1, . . . , γM denotes the polygonal curves in (v) of the lemma, then, the
cancellations arising from integrating over the same side but in opposite
directions in (2) yield

n∑
j=1

1
2πi

∫
γj

dζ

ζ − w
= 1,

and hence Wγj0
(w) �= 0 for some j0. The closed curve γj0 lies entirely in

Ω, and this gives the desired contradiction.
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Proof of the lemma. Since F2 is closed, the sets F1 and F2 are at a
finite non-zero distance d from one another. Now consider a uniform grid
G0 of the plane consisting of closed squares of side length which is much
smaller than d, say < d/100, and such that w lies at the center of a closed
square R1 in this grid. Let R = {R1, . . . , Rm} denote the finite collection
of all closed squares in the grid that intersect F1. Then, the collection R
satisfies properties (i) through (iv) of the lemma. To guarantee (v), we
argue as follows.

The boundary of each square in R is given the positive (counterclock-
wise) orientation. The boundary of

⋃m
j=1Rj is then equal to the union

of all boundary sides, that is, those sides that do not belong to two ad-
jacent squares in the collection R. Similarly, the boundary vertices are
the end-points of all boundary sides. A boundary vertex is said to be
“bad,” if it is the end-point of more than two boundary sides. (See point
P on Figure 1.)

G0 G

P

Figure 1. Eliminating bad boundary vertices

To eliminate the bad boundary vertices, we refine the grid G0 and
possibly add some squares. More precisely, consider the grid G obtained
as a refinement of the original grid, by dissecting all squares of G0 into
nine equal subsquares. Then, let Q1, . . . , Qp denote all the squares in the
grid G that are subsquares of squares in the collection R (so in particular,
p = 9n), and where Q1 is chosen so that w ∈ Q1. Then, we may add
finitely many squares from G near each bad boundary vertex, so that the
resulting family Q = {Q1, . . . , Qn} has no bad boundary vertices. (See
Figure 1.)
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Clearly, Q still satisfies (i) through (iv), and we claim this collec-
tion also satisfies (v). Indeed, let [a1, a2] denote any boundary side of⋃n

j=1Qj with its orientation from a1 to a2. By considering the three
different possibilities, one sees that a2 is the beginning point of another
boundary side [a2, a3]. Continuing in this fashion, we obtain a sequence
of boundary sides [a1, a2], [a2, a3], . . . , [an, an+1], . . .. Since there are only
finitely many sides, we must have an = am for some n and some m > n.
We may choose the smallest m so that an = am, say m = m′. Then,
we note that if n > 1, then am′ is an end-point of at least three bound-
ary sides, namely [an−1, an], [an, an+1], and [am′−1, am′ ], hence am′ is
a bad boundary vertex. Since we arranged that Q had no such bound-
ary vertices, we conclude that n = 1, and hence the polygon formed by
a1, . . . , am′ is closed and simple. We may repeat this process and find
that Q satisfies property (v), and the proof of Lemma 1.5 is complete.

Finally, we are now able to finish the proof of Theorem 1.2, namely,
if Ω is bounded and simply connected we can conclude that Ωc is con-
nected. To see this, note that if Ωc is not connected, then we have
constructed a curve γ ⊂ Ω and found a point w /∈ Ω so that Wγ(w) �= 0,
thus contradicting the fact that Ω is simply connected.

2 The Jordan curve theorem

Although we emphasize in the statement of the theorems which follow
that the curves are piecewise-smooth, we note that the proofs involve the
use of curves that may only be continuous, (the curves Γε below).

The two main results in this section are the following.

Theorem 2.1 Let Γ be curve in the plane that is simple and piecewise-
smooth. Then, the complement of Γ is an open connected set whose
boundary is precisely Γ.

Theorem 2.2 Let Γ be a curve in the plane which is simple, closed, and
piecewise-smooth. Then, the complement of Γ consists of two disjoint
connected open sets. Precisely one of these regions is bounded and simply
connected; it is called the interior of Γ and denoted by Ω. The other
component is unbounded, called the exterior of Γ, and denoted by U .

Moreover, with the appropriate orientation for Γ, we have

WΓ(z) =
{

1 if z ∈ Ω,
0 if z ∈ U .
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Remark. These two theorems continue to hold in the general case
where we drop the assumption that the curves are piecewise-smooth.
However, as it turns out, the proofs then are more difficult. Fortunately,
the restricted setting of piecewise-smooth curves suffices for many appli-
cations.

As a consequence of the above propositions, we may state a version of
Cauchy’s theorem as follows:

Theorem 2.3 Suppose f is a function that is holomorphic in the inte-
rior Ω of a simple closed curve Γ. Then∫

η

f(ζ) dζ = 0

whenever η is any closed curve contained in Ω.

The idea of the proof of Theorem 2.1 can be roughly summarized as
follows. Since the complement of Γ is open, it is sufficient to show it
is pathwise connected (Exercise 5, Chapter 1). Let z and w belong to
the complement of Γ, and join these two points by a curve. If this curve
intersects Γ, we first connect z to z′ and w to w′, where z′ and w′ are
close to Γ, by curves that do not intersect Γ. Then, we join z′ to w′

by traveling “parallel” to the curve Γ and going around its end-points if
necessary.

Therefore, the key is to construct a family of continuous curves that are
“parallel” to Γ. This can be achieved because of the conditions imposed
on the curve. Indeed, if γ is a parametrization for a smooth piece of Γ,
then γ is continuously differentiable, and γ′(t) �= 0. Moreover, the vector
γ′(t) is tangent to Γ. Consequently, iγ′(t) is perpendicular to Γ, and
if Γ is simple, considering γ(t) + iεγ′(t) amounts to a new curve that is
“parallel” to Γ. The details are as follows.

In the next three lemmas and two propositions, we emphasize that Γ0

denotes a simple smooth curve. We recall that an arc-length parametriza-
tion γ for a smooth curve Γ0 satisfies |γ′(t)| = 1 for all t. Every smooth
curve has an arc-length parametrization.

Lemma 2.4 Let Γ0 be a simple smooth curve with an arc-length parametriza-
tion given by γ : [0, L] → C. For each real number ε, let Γε be the con-
tinuous curve defined by the parametrization

γε(t) = γ(t) + iεγ′(t), for 0 ≤ t ≤ L.

Then, there exists κ1 > 0 so that Γ0 ∩ Γε = ∅ whenever 0 < |ε| < κ1.
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Proof. We first prove the result locally. If s and t belong to [0, L],
then

γε(t) − γ(s) = γ(t) − γ(s) + iεγ′(t)

=
∫ t

s

γ′(u) du+ iεγ′(t)

=
∫ t

s

[γ′(u) − γ′(t)] du+ (t− s+ iε)γ′(t).

Since γ′ is uniformly continuous on [0, L], there exists δ > 0 so that
|γ′(x) − γ′(y)| < 1/2 whenever |x− y| < δ. In particular, if |s− t| < δ
we find that

|γε(t) − γ(s)| > |t− s+ iε| |γ′(t)| − |t− s|
2

.

Since γ is an arc-length parametrization, we have |γ′(t)| = 1, and hence

|γε(t) − γ(s)| > |ε|/2,

where we have used the simple fact that 2|a+ ib| ≥ |a| + |b| whenever a
and b are real. This proves that γε(t) �= γ(s) whenever |t− s| < δ and
ε �= 0.

To conclude the proof of the lemma, we argue as follows. (See Figure 2
for an illustration of the argument.)

γε(J ′
k)

w

γε(Jk)
γε(J ′

k)

zζ

γ(Ik)
γ(J ′

k)
γ(J ′

k)

Figure 2. Situation in the proof of Lemma 2.4

Let 0 = t0 < · · · < tn = L be a partition of [0, L] with |tk+1 − tk| < δ
for all k, and consider

Ik = {t : |t− tk| ≤ δ/4}, Jk = {t : |t − tk| ≤ δ/2},
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and

J ′
k = {t : |t− tk| ≥ δ/2}.

Then, we have just proved that

(3) γ(Ik) ∩ γε(Jk) = ∅ whenever ε �= 0.

Since Γ0 is simple, the distance dk between the two compact sets γ(Ik)
and γ(J ′

k) is strictly positive. We now claim that

(4) γ(Ik) ∩ γε(J ′
k) = ∅ whenever |ε| < dk/2.

Indeed, if z ∈ γ(Ik) and w ∈ γε(J ′
k), then we choose s in J ′

k so that
w = γε(s) and let ζ = γ(s). The triangle inequality then implies

|z − w| ≥ |z − ζ| − |ζ − w| ≥ dk − |ε| ≥ dk/2,

and the claim is established. Finally, if we choose κ1 = mink dk/2, then (3)
and (4) imply that Γ0 ∩ Γε = ∅ whenever 0 < |ε| < κ1, as desired.

The next lemma shows that any point close to an interior point of the
curve belongs to one of its parallel translates. By an interior point of
the curve, we mean a point of the form γ(t) with t in the open interval
(0, L). Such a point should not to be confused with an “interior” point
of a curve, as in Theorem 2.2.

Lemma 2.5 Suppose z is a point which does not belong to the smooth
curve Γ0, but that is closer to an interior point of the curve than to either
of its end-points. Then z belongs to Γε for some ε �= 0.

More precisely, if z0 ∈ Γ0 is closest to z and z0 = γ(t0) for some t0 in
the open interval (0, L), then z = γ(t0) + iεγ′(t0) for some ε �= 0.

Proof. For t in a neighborhood of t0 the fact that γ is differentiable
guarantees that

z − γ(t) = z − γ(t0) − γ′(t0)(t− t0) + o(|t− t0|).

Since z0 = γ(t0) minimizes the distance from z to Γ0, we find that
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|z − z0|2 ≤ |z − γ(t)|2 = |z − z0|2 − 2(t− t0)Re
(
[z − γ(t0)]γ′(t0)

)
+

+ o (|t− t0|).

Since t− t0 can take on positive or negative values, we must have

Re
(
[z − γ(t0)]γ′(t0)

)
= 0, otherwise the above inequality can be vio-

lated for t close to t0. As a result, there exists a real number ε with
[z − γ(t0)]γ′(t0) = iε. Since |γ′(t0)| = 1 we have γ′(t0) = 1/γ′(t0), and
therefore z − γ(t0) = iεγ′(t0). The proof of the lemma is complete.

Suppose that z and w are close to interior points of Γ0, so that z ∈ Γε

and w ∈ Γη for some non-zero ε and η. If ε and η have the same sign, we
say that the points z and w belong to the same side of Γ0. Otherwise,
z and w are said to be on opposite sides of Γ0. We stress the fact that
we do not attempt to define the “two sides of Γ0,” but only that given
two points near Γ0, we may infer if they are on the “same side” or on
“opposite sides”. Also, nothing we have done so far shows that these
conditions are mutually exclusive.

Roughly speaking, points on the same side can be joined almost di-
rectly by a curve “parallel” to Γ0, while for points on opposite sides, we
also need to go around one of the end-points of Γ0.

We first investigate the situation for points on the same side of Γ0.

Proposition 2.6 Let A and B denote the two end-points of a simple
smooth curve Γ0, and suppose that K is a compact set that satisfies
either

Γ0 ∩K = ∅ or Γ0 ∩K = A ∪B.

If z /∈ Γ0 and w /∈ Γ0 lie on the same side of Γ0, and are closer to interior
points of Γ0 than they are to K or to the end-points of Γ0, then z and w
can be joined by a continuous curve that lies entirely in the complement
of K ∪ Γ0.

The unspecified compact set K will be chosen appropriately in the
proof of the Jordan curve theorem.

Proof. By the previous lemma, consider z0 = γ(t0) and w0 = γ(s0)
that are interior points of Γ0 closest to z and w, respectively. Then

z = γ(t0) + iε0γ
′(t0) and w = γ(s0) + iη0γ

′(s0),
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where ε0 and η0 have the same sign, which we may assume to be positive.
We may also assume that t0 ≤ s0.

The hypothesis of the lemma implies that the line segments joining z
to z0 and w to w0 are entirely contained in the complement of K and
Γ0. Therefore, for all small ε > 0, we may join z and w to the points

zε = γ(t0) + iεγ′(t0) and w = γ(s0) + iεγ′(s0),

respectively. See Figure 3.

Γ z

z0

w0
wε

w

zε

Figure 3. Situation in the proof of Proposition 2.6

Finally, if ε is chosen smaller than κ1 in Lemma 2.4 and also smaller
than the distance from K to the part of Γ0 between z0 and w0, that is,
{γ(t) : t0 ≤ t ≤ s0}, then the corresponding part of Γε, namely {γε(t) :
t0 ≤ t ≤ s0}, joins the point zε to wε. Moreover, this curve is contained
in the complement of K and Γ0. This proves the proposition.

To join points on opposite sides of Γ0, we need the following prelimi-
nary result, which ensures that there is enough room necessary to travel
around the end-points.

Lemma 2.7 Let Γ0 be a simple smooth curve. There exists κ2 > 0 so
that the set N , which consists of points of the form z = γ(L) + εeiθγ′(L)
with −π/2 ≤ θ ≤ π/2 and 0 < ε < κ2, is disjoint from Γ0.

Proof. The argument is similar to the one given in the proof of
Lemma 2.4. First, we note that

γ(L) + εeiθγ′(L) − γ(t) =
∫ L

t

[γ′(u) − γ′(L)] du+ (L− t+ εeiθ)γ′(L).
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If we choose δ so that |γ′(u) − γ′(L)| < 1/2 when |u− L| < δ, then
|t− L| < δ implies

|γ(L) + εeiθγ′(L) − γ(t)| ≥ |ε|/2 .

Therefore γ(t) /∈ N whenever L− δ ≤ t ≤ L. Finally, it suffices to choose
κ2 smaller than the distance from the end-point γ(L) to the rest of the
curve γ(t) with 0 ≤ t ≤ L− δ, to conclude the proof.

Finally, we may state the result analogous to Proposition 2.6 for points
that could lie on opposite sides of Γ0.

Proposition 2.8 Let A denote an end-point of the simple smooth curve
Γ0, and suppose that K is a compact set that satisfies either

Γ0 ∩K = ∅ or Γ0 ∩K = A.

If z /∈ Γ0 and w /∈ Γ0 are closer to interior points of Γ0 than they are to
K or to the end-points of Γ0, then z and w can be joined by a continuous
curve that lies entirely in the complement of Γ0 ∪K.

We only provide an outline of the argument, which is similar to the
proof of Proposition 2.6. It suffices to consider the case when z and w
lie on opposite sides of Γ0 and A = γ(0). First, we may join

zε = γ(t0) + iεγ′(t0) and wε = γ(s0) − iεγ′(s0)

to the points

z′ε = γ(L) + iεγ′(L) and w′
ε = γ(L) − iεγ′(L).

Then, z′ε and w′
ε may be joined within the “half-neighborhood” N of

Lemma 2.7. Here, if t0 ≤ s0 we must select |ε| smaller than the dis-
tance from {γ(t) : t0 ≤ t ≤ L} to K, and also smaller than κ1 and κ2 of
Lemmas 2.4 and 2.7.

Proof of Theorem 2.1

Let Γ be a simple piecewise-smooth curve.
First, we prove that the boundary of the set O = Γc is precisely Γ.

Clearly, O is an open set whose boundary is contained in Γ. Moreover,
any point where Γ is smooth also belongs to the boundary of O (by
Lemma 2.4 for instance). Since the boundary of O must also be closed,
we conclude it is equal to all of Γ.
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Γ
z

w

N

Figure 4. Situation in the proof of Proposition 2.8

The proof that O is connected is by induction on the number of smooth
curves constituting Γ. Suppose first that Γ is simple and smooth, and let
Z and W be any two points that do not lie on Γ. Let Λ be any smooth
curve in C that joins Z and W , and which omits the two end-points of Γ.
If Λ intersects Γ, it does so at interior points. Therefore, we may join Z
by a piece of Λ that does not intersect Γ to a point z that is closer to the
interior of Γ than to either of its end-points. Similarly, W can be joined
in the complement of Γ to a point w also closer to the interior of Γ than
to either of its end-points. Proposition 2.8 (with K empty) then shows
that z and w can be joined by a continuous curve in the complement of
Γ. Altogether, we may join any two points in the complement of Γ, and
this proves the base step of the induction.

Suppose that the theorem is proved for all curves containing n− 1
smooth curves, and let Γ consist of n smooth curves, so that we may
write

Γ = K ∪ Γ0,

where K is the union of n− 1 consecutive smooth curves, and Γ0 is
smooth. In particular, K is compact and intersects Γ0 in a single one of
its end-points. By the induction hypothesis, any two points Z and W in
the complement of Γ can be joined by a curve that does not intersect K,
and we may also assume that this curve omits both end-points of Γ0. If
this curve intersects Γ0 in its interior, then we apply Proposition 2.8 to
conclude the proof of the theorem.
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Proof of Theorem 2.2

Let Γ denote a curve which is simple, closed, and piecewise-smooth. We
first prove that the complement of Γ consists of at most two components.

Fix a point W that lies outside some large disc that contains Γ, and
let U denote the set of all points that can be joined to W by a continuous
curve that lies entirely in the complement of Γ. The set U is clearly open,
and also connected since any two points can be joined by passing first
through W . Now we define

Ω = Γc − U .

We must show that Ω is connected. To this end, let K denote the curve
obtained by deleting a smooth piece Γ0 of Γ. By the Jordan arc theorem,
we may join any point Z ∈ Ω to W by a curve ΛZ that does not intersect
K. Since Z /∈ U , the curve ΛZ must intersect Γ0 at one of its interior
points. We may therefore choose two points z, w ∈ ΛZ closer to interior
points of Γ0 than to either of its end-points, and so that the pieces of ΛZ

joining Z to z and W to w are entirely contained in the complement of
Γ. Then, the points z and w are on opposite sides of Γ0, for otherwise,
we could apply Proposition 2.6 to find that Z can be joined to W by a
curve lying in the complement of Γ, and this contradicts Z /∈ U . Finally,
if Z1 is another point in Ω, the two corresponding points z1 and w1

must also lie on opposite sides of Γ0. Moreover, z and z1 must lie on
the same side of Γ0, for otherwise z and w1 do, and we can once again
join Z to W without crossing Γ, thus contradicting Z /∈ U . Therefore,
by Proposition 2.6 the points z and z1 can be joined by a curve in the
complement of Γ, and we conclude that Z and Z1 belong to the same
connected component.

The argument thus far proves that Γc contains at most two compo-
nents, but nothing as yet guarantees that Ω is non-empty. To show that
Γc has precisely two components, it suffices (by Lemma 1.3) to prove
that there are points that have different winding numbers with respect
to Γ. In fact, we claim that points that are on opposite sides of Γ have
winding numbers that differ by 1. To see this, fix a point z0 on a smooth
part of Γ, say z0 = γ(t0), let ε > 0, and define

zε = γ(t0) + iεγ′(t0) and wε = γ(t0) − iεγ′(t0).

By our previous observations, points on the same side of Γ belong to the
same connected component, and hence

� = |WΓ(zε) −WΓ(wε)|
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is constant for all small ε > 0.
First, we may write(

γ′(t)
γ(t) − zε

− γ′(t)
γ(t) − wε

)
=

2iεγ′(t0)γ′(t)
[γ(t) − γ(t0)]2 + ε2γ′(t0)2

.

For the numerator, we use

γ′(t) = γ′(t0) + [γ′(t) − γ′(t0)]

= γ′(t0) + ψ(t),

where ψ(t) → 0 as t→ t0. For the denominator, we recall that γ′(t0) �= 0,
so that

[γ(t) − γ(t0)]2 + ε2γ′(t0)2 = γ′(t0)2[(t− t0)2 + ε2] + o(|t − t0|).

Putting these results together, we see that(
γ′(t)

γ(t) − zε
− γ′(t)
γ(t) − wε

)
=

2iε
(t− t0)2 + ε2

+ E(t),

where given η > 0, there exists δ > 0 so that if |t− t0| ≤ δ, the error term
satisfies

|E(t)| ≤ η
ε

(t − t0)2 + ε2
.

We then write

� =
1

2πi

∫
|t−t0|≥δ

(
γ′(t)

γ(t) − zε
− γ′(t)
γ(t) − wε

)
dt+

+
1

2πi

∫
|t−t0|<δ

(
2iε

(t− t0)2 + ε2
+E(t)

)
dt.

The first integral goes to 0 as ε→ 0. In the second integral we make the
change of variables t− t0 = εs, and note that

1
π

∫ ρ

−ρ

ds

s2 + 1
=

1
π

[arctan s]ρ−ρ → 1 as ρ→ ∞.

We therefore see that letting ε→ 0 gives

|� − 1| < η.
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We conclude that � = 1, and hence Γc has precisely two components.
Finally, only one of these components can be unbounded, namely U , and
the winding number of Γ in this component must therefore be zero. By
our last result, we see that, after possibly reversing the orientation of the
curve, the winding number of any point in the bounded component Ω is
constant and equal to 1. Also, it is clear from what has been said that
any smooth point on Γ can be approached by points in either component,
and hence Γ is the boundary of both Ω and U .

The final step in the proof is to show that the interior of the curve,
that is, the bounded component Ω, is simply connected. By Theorem 1.2
it suffices to show that Ωc is connected. If not, then

Ωc = F1 ∪ F2,

where F1 and F2 are closed, disjoint, and non-empty. Let

O1 = U ∩ F1 and O2 = U ∩ F2.

Clearly, O1 and O2 are disjoint. If z ∈ O1, then z ∈ U , and every small
ball centered at z is contained in U . If every such ball intersects F2,
then z ∈ F2 since F2 is closed. However, F1 and F2 are disjoint, so this
cannot happen. Consequently, O1 is open, and by the same argument, so
is O2. Finally, we claim that O1 is non-empty. If not, then F1 is entirely
contained in Γ and U is contained in F2. Pick any point z ∈ F1, which
we know belongs to Γ. Now every ball centered at z intersects U , hence
F2. But F2 is closed and disjoint from F1, so we get a contradiction. A
similar argument for O1 proves that

U = O1 ∪O2,

where O1,O2 are disjoint, open, and non-empty. This contradicts the
fact that U is connected, and concludes the proof of the Jordan curve
theorem for piecewise-smooth curves.

2.1 Proof of a general form of Cauchy’s theorem

Theorem 2.9 If a function f is holomorphic in an open set that con-
tains a simple closed piecewise-smooth curve Γ and its interior, then∫

Γ

f = 0.

Let O denote an open set on which f is holomorphic, and which con-
tains Γ and its interior Ω. The idea is to construct a closed curve Λ
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in Ω that is so close to Γ that
∫
Γ
f =

∫
Λ
f . Then, the integral on the

right-hand side is 0, since f is holomorphic in the simply connected open
set Ω. We build Λ as follows. Near the smooth parts of Γ, the curve Λ
is essentially a curve like Γε in Lemma 2.4. Near points where smooth
parts of Γ join, we shall use for Λ an arc of a circle. This is illustrated
in Figure 5.

Ω

Γ

Λ

Figure 5. The curve Λ

To find the appropriate connecting arcs, we need the following prelim-
inary result.

Lemma 2.10 Let γ : [0, 1] → C be a simple smooth curve. Then, for all
sufficiently small δ > 0 the circle Cδ centered at γ(0) and of radius δ
intersects γ in precisely one point.

Proof. We may assume that γ(0) = 0. Since γ(0) �= γ(1) it is clear
that for each small δ > 0, the circle Cδ intersects γ in at least one point.
If the conclusion in the lemma is false, we can find a sequence of positive
δj going to 0, and so that the equation |γ(t)| = δj has at least two distinct
solutions. The mean value theorem applied to h(t) = |γ(t)|2 provides a
sequence of positive numbers tj so that tj → 0 and h′(tj) = 0. Thus

γ′(tj) · γ(tj) = 0 for all j.

However, the curve is smooth, so

γ(t) = γ(0) + γ′(0)t+ tϕ(t) and γ′(t) = γ′(0) + ψ(t),
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where |ϕ(t)| → 0 and |ψ(t)| → 0 as t goes to 0. Then recalling that γ(0) =
0, we find γ′(t) · γ(t) = |γ′(0)|2t+ o(|t|). The definition of a smooth curve
also requires that γ′(0) �= 0, so the above gives

γ′(t) · γ(t) �= 0 for all small t.

This is the desired contradiction.

Returning to the proof of Cauchy’s theorem, choose ε so small that
the open set U of all points at a distance < ε of Γ is contained in O.

Next, if P1, . . . , Pn denote the consecutive points where smooth parts
of Γ join, we may pick δ < ε/10 so small that each circle Cj centered at a
point Pj and of radius δ intersects Γ in precisely two distinct points (this
is possible by the previous lemma). These two points on Cj determine
two arcs of circles, only one of which (denoted by Cj) has an interior
entirely contained in Ω. To see this, it suffices to recall that if γ is a
parametrization of a smooth part of Γ with end-point Pj, then for all
small ε′ the curves parametrized by γε′ and γ−ε′ of Lemma 2.4 lie on
opposite sides of Γ and must intersect the circle Cj . By construction the
disc D∗

j centered at Pj and of radius 2δ is also contained in U , hence
in O.

Bj

Aj

Pj+1

Ω

ΛjPj

Γj

Bj+1

Aj+1

Figure 6. Construction of the curve Λ

We wish to construct Λ so that we may argue as in the proof of The-
orem 5.1, Chapter 3 and establish

∫
Γ
f =

∫
Λ
f . To do so, we consider a

chain of discs D = {D0, . . . , DK} contained in U , and so that Γ is con-
tained in their union, with Dk ∩Dk+1 �= ∅, D0 = DK , and with the discs
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D∗
j part of the chain D. Suppose Γj is the smooth part of Γ that joins Pj

to Pj+1. By Lemma 2.4 it is possible to construct a continuous curve Λj

that is contained in Ω and in the union of the discs, and which connects
a point on Bj on Cj to a point on Aj+1 on Cj+1 (see Figure 6). Since
we only assumed that Γ has one continuous derivative, Λj need not be
smooth, but by approximating this continuous curve by polygonal lines
if necessary, we may actually assume that Λj is also smooth. Then, Aj+1

is joined to Bj+1 by a piece of Cj+1, and so on. This procedure provides
a piecewise-smooth curve Λ that is closed and contained in Ω.

Since f has a primitive on each disc of the family D, we may argue as
in the proof of Theorem 5.1, Chapter 3 to find that

∫
Γ
f =

∫
Λ
f . Since

Ω is simply connected, we have
∫
Λ
f = 0, and as a result∫

Γ

f = 0.
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Useful references for many of the subjects treated here are Saks and Zygmund [34],
Ahlfors [2], and Lang [23].

Introduction

The citation is from Riemann’s dissertation [32].

Chapter 1

The citation is a free translation of a passage in Borel’s book [6].
Chapter 2

The citation is a translation of an excerpt from Cauchy’s memoir [7].
Results related to the natural boundaries of holomorphic functions in the unit

disc can be found in Titchmarsh [36].
The construction of the universal functions in Problem 5 are due to G. D. Birkhoff

and G.R. MacLane.

Chapter 3

The citation is a translation of a passage in Cauchy’s memoir [8].
Problem 1 and other results related to injective holomorphic mappings (uni-

valent functions) can be found in Duren [11].
Also, see Muskhelishvili [25] for more about the Cauchy integral introduced

in Problem 5.

Chapter 4

The citation is from Wiener [40].
The argument in Exercise 1 was discovered by D. J. Newman; see [4].
The Paley-Wiener theorems appeared first in [28]; further generalizations can

be found in Stein and Weiss [35].
Results related to the Borel transform (Problem 4) can be found in Boas [5].

Chapter 5

The citation is a translation from the German of a passage in a letter from
K. Weierstrass to S. Kowalewskaja; see [38].

A classical reference for Nevanlinna theory is the book by R. Nevanlinna
himself [27].

Chapter 6

A number of different proofs of the analytic continuation and functional equation
for the zeta function can be found in Chapter 2 of Titchmarsch [37].

Chapter 7

The citation is from Hadamard [14]. Riemann’s statement concerning the zeroes
of the zeta function in the critical strip is a passage taken from his paper [33].

Further material related to the proof of the prime number theorem presented
in the text is in Chapter 2 of Ingham [19], and Chapter 3 of Titchmarsch [37].
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The “elementary” analysis of the distribution of primes (without using the
analytic properties of the zeta function) was initiated by Tchebychev, and cul-
minated in the Erdös-Selberg proof of the prime number theorem. See Chap-
ter XXII in Hardy and Wright [17].

The results in Problems 2 and 3 can be found in Chapter 4 of Ingham [19].
For Problem 4, consult Estermann [13].

Chapter 8

The citation is from Christoffel [9].
A systematic treatment of conformal mappings is Nehari [26].
Some history related to the Riemann mapping theorem, as well as the details

in Problem 7, can be found in Remmert [31].
Results related to the boundary behavior of holomorphic functions (Prob-

lem 6) are in Chapter XIV of Zygmund [41].
An introduction to the interplay between the Poincaré metric and complex

analysis can be found in Ahlfors [1]. For further results on the Schwartz-Pick
lemma and hyperbolicity, see Kobayashi [21].

For more on Bieberbach’s conjecture, see Chapter 2 in Duren [11] and Chap-
ter 8 in Hayman [18].

Chapter 9

The citation is taken from Poincaré [30].
Problems 2, 3, and 4 are in Saks and Zygmund [34].

Chapter 10

The citation is from Hardy, Chapter IX in [16].

A systematic account of the theory of theta functions and Jacobi’s theory of
elliptic functions is in Whittaker and Watson [39], Chapters 21 and 22.

Section 2. For more on the partition function, see Chapter XIX in Hardy and
Wright [17].

Section 3. The more standard proofs of the theorems about the sum of two
and four squares are in Hardy and Wright [17], Chapter XX. The approach we
use was developed by Mordell and Hardy [15] to derive exact formulas for the
number of representations as the sum of k squares, when k ≥ 5. The special
case k = 8 is in Problem 6. For k ≤ 4 the method as given there breaks down
because of the non-absolute convergence of the associated “Eisenstein series.” In
our presentation we get around this difficulty by using the “forbidden” Eisenstein
series. When k = 2, an entirely different construction is needed, and the analysis
centering around C(τ) is a further new aspect of this problem.

The theorem on the sum of three squares (Problem 1) is in Part I, Chapter 4
of Landau [22].

Appendix A

The citation is taken from the appendix in Airy’s article [3].
For systematic accounts of Laplace’s method, stationary phase, and the method

of steepest descent, see Erdélyi [12] and Copson [10].
The more refined asymptotics of the partition function can be found in Chap-

ter 8 of Hardy [16].
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Appendix B

The citation is taken from Picard’s address found in Jordan’s collected works [20].
The proof of the Jordan curve theorem for piecewise-smooth curve due to

Pederson [29] is an adaptation of the proof for polygonal curves which can be
found in Saks and Zygmund [34].

For a proof of the Jordan theorem for continuous curves using notions of
algebraic topology, see Munkres [24].
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[30] H. Poincaré. L’Oeuvre mathématiques de Weierstrass. Acta Math-
ematica, 22, 1899.



BIBLIOGRAPHY 371

[31] R. Remmert. Classical Topics in Complex Function Theory.
Springer-Verlag, New York, 1998.

[32] B. Riemann. Grundlagen für eine Allgemeine Theorie der Functio-
nen einer Veränderlichen Complexen Grösse. Inauguraldissertation,
Göttingen, 1851, Collected Works, Springer-Verlag, 1990.

[33] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebe-
nen Grösse. Monat. Preuss. Akad. Wissen., 1859, Collected Works,
Springer-Verlag, 1990.

[34] S. Saks and Z. Zygmund. Analytic Functions. Elsevier, PWN-Polish
Scientific, third edition, 1971.

[35] E. M. Stein and G. Weiss. Introduction to Fourier Analysis on
Euclidean Spaces. Princeton University Press, 1971.

[36] E. C. Titchmarsh. The Theory of Functions. Oxford University
Press, London, second edition, 1939.

[37] E. C. Titchmarsh. The Theory of the Riemann Zeta-Function. Ox-
ford University Press, 1951.

[38] K. Weierstrass. Briefe von Karl Weierstrass an Sofie Kowalewskaja
1871-1891. Moskva, Nauka, 1973.

[39] E.T. Whittaker and G.N. Watson. A Course in Modern Analysis.
Cambridge University Press, 1927.

[40] N. Wiener. “R. E. A. C. Paley - in Memoriam”. Bull. Amer. Math.
Soc., 39:476, 1933.

[41] A. Zygmund. Trigonometric Series, volume I and II. Cambridge
University Press, second edition, 1959. Reprinted 1993.





Symbol Glossary

The page numbers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z, Q, R, and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

Re(z), Im(z) Real and Imaginary parts 2
arg z Argument of z 4
|z|, z Absolute value and complex conjugate 3, 3
Dr(z0), Dr(z0) Open and closed discs centered at z0

and with radius r
5, 6

Cr(z0) Circle centered at z0 with radius r 6
D, C Generic disc and circle
D Unit disc 6
Ωc, Ω, ∂Ω Complement, closure, and boundary of Ω 6
diam(Ω) Diameter of Ω 6
∂
∂z , ∂

∂z Differential operators 12
ez, cos z, sin z Complex exponential and trigonometric

functions
14, 16

γ− Reverse parametrization 19
O, o, ∼ Bounds and asymptotic relations 24
� Laplacian 27
F (α, β, γ; z) Hypergeometric series 28
reszf Residue 75
Pr(γ), Py(x) Poisson kernels 67, 78
cosh z, sinh z Hyperbolic cosine and sine 81, 83
S Riemann sphere 89
log, logΩ Logarithms 98, 99
f̂(ξ) Fourier transform 111
Fa, F Class of functions with moderate decay in

strips
113, 114

Sa, Sδ,M Horizontal strips 113, 160
ρ, ρf Order of growth 138
Ek Canonical factors 145
ψα Blaschke factors 153
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374 SYMBOL GLOSSARY

Γ(s) Gamma function 160
ζ(s) Riemann zeta function 168
ϑ, Θ(z|τ), θ(τ) Theta function 169, 284, 284
ξ(s) Xi function 169
Jν Bessel functions 176
Bm Bernoulli number 179
π(x) Number of primes ≤ x 182
f(x) ≈ g(x) Asymptotic relation 182
ψ(x), Λ(n), ψ1(x) Functions of Tchebychev 188, 189, 190
d(n) Number of divisors of n 200
σa(n) Sum of the ath powers of divisors of n 200
µ(n) Möbius function 200
Li(x) Approximation to π(x) 202
H Upper half-plane 208
Aut(Ω) Automorphism group of Ω 219
SL2(R) Special linear group 222
PSL2(R) Projective special linear group 223
SU(1, 1) Group of fractional linear transforma-

tions
257

Λ, Λ∗ Lattice and lattice minus the origin 262, 267
℘ Weierstrass elliptic function 269
Ek(τ), E∗

2 (τ) Eisenstein series 273, 305
F (τ), F̃ (τ) Forbidden Eisenstein series and its re-

verse
278, 305

Π(z|τ) Triple product 286
η(τ) Dedekind eta function 292
p(n) Partition function 293
r2(n) Number of ways n is a sum of two squares 296
r4(n) Number of ways n is a sum of four

squares
297

d1(n), d3(n), σ∗
1(n) Divisor functions 297, 304

Ai(s) Airy function 328
Wγ(z) Winding number 347



Index

Relevant items that also arise in Book I are listed in this index,
preceeded by the numeral I.

Abel’s theorem, 28
Airy function, 328
amplitude, 323; (I)3
analytic continuation, 53
analytic function, 9, 18
angle preserving, 255
argument principle, 90
arithmetic-geometric mean, 260
automorphisms, 219

of the disc, 220
of the upper half-plane, 222

axis
imaginary, 2
real, 2

Bernoulli
numbers, 179, 180; (I)97, 167
polynomials, 180; (I)98

Bessel function, 29, 176, 319;
(I)197

Beta function, 175
Bieberbach conjecture, 259
Blaschke

factors, 26, 153, 219
products, 157

bump functions, (I)162

canonical factor, 145
degree, 145

Casorati-Weierstrass theorem,
86

Cauchy inequalities, 48
Cauchy integral formulas, 48
Cauchy sequence, 5; (I)24

Cauchy theorem
for a disc, 39
for piecewise-smooth curves,

361
for simply connected regions,

97
Cauchy-Riemann equations, 12
chain rule

complex version, 27
for holomorphic functions, 10

circle
negative orientation, 20
positive orientation, 20

closed disc, 6
complex differentiable, 9
complex number

absolute value, 3
argument, 4
conjugate, 3
imaginary part, 2
polar form, 4
purely imaginary, 2
real part, 2

component, 26
conformal

equivalence, 206
map, 206
mapping onto polygons, 231

connected
closed set, 7
component, 26
open set, 7
pathwise, 25

375



376 INDEX

cotangent (partial fractions),
142

critical points, 326
critical strip, 184
curve, 20; (I)102

closed, 20; (I)102
end-points, 20
length, 21; (I)102
piecewise-smooth, 20
simple, 20; (I)102
smooth, 19
homotopic, 93

cusps, 301

Dedekind eta function, 292
deleted neighborhood, 74
Dirichlet problem, 212, 216

in a strip, 212; (I)170
in the unit disc, 215; (I)20

disc of convergence, 15
divisor functions, 277, 297, 304;

(I)269,280
doubly periodic function, 262

Eisenstein series, 273
forbidden, 278

elliptic function, 265
order, 266

elliptic integrals, 233, 245
entire function, 9, 134
equivalent parametrizations, 19
essential singularity, 85

at infinity, 87
Euler

constant, 167; (I)268
formulas for cos z and

sin z, 16
product, 182; (I)249

exhaustion, 226
expansion (mapping), 258
exponential function, 14; (I)24
exponential type, 112

exterior, 351

Fibonacci numbers, 310; (I)122
fixed point, 250
Fourier

inversion formula, 115; (I)141
series, 101; (I)34
transform, 111;

(I)134,136,181
fractional linear

tranformations, 209
Fresnel integrals, 64
function

Airy Ai, 328
analytic, 9, 18
Bessel, 29, 176, 319; (I)197
Beta, 175
complex differentiable, 9
continuous, 8
doubly periodic, 262
elliptic, 265
entire, 9, 134
exponential type, 112
gamma Γ, 160; (I)165
harmonic, 27; (I)20
holomorphic, 8
maximum, 8
meromorphic, 86
minimum, 8
moderate decrease, 112;

(I)131, 179, 294
open mapping, 91
partition, 293
regular, 9
Weierstrass ℘, 269
zeta ζ, 168; (I)98,155,166,248

functional equation
of η, 292
of ϑ, 169; (I)155
of ζ, 170

fundamental domain, 302
fundamental parallelogram, 262
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fundamental theorem of
algebra, 50

gamma function, 160; (I)165
generating function, 293
golden mean, 310
Goursat’s theorem, 34,65
Green’s function, 217

Hadamard formula, 15
Hadamard’s factorization

theorem, 147
half-periods, 271
Hardy’s theorem, 131
Hardy-Ramanujan asymptotic

formula, 334
harmonic function, 27; (I)20
Hermitian inner product in C,

24; (I)72
holomorphic function, 8
holomorphically simply

connected, 231
homotopic curves, 93
hyperbolic

distance, 256
length, 256

hypergeometric series, 28, 176

imaginary part (complex
number), 2

inner product in R2, 24
of a set, 6
point, 6

isogonal, 254
isolated singularity, 73
isotropic, 254

Jensen’s formula, 135, 153
Jordan arc theorem

(piecewise-smooth curves),
350

Jordan curve theorem
(piecewise-smooth
curves),350

keyhole toy contour, 40

Laplace’s method, 317,322
Laplacian, 27; (I)20,149,185
Laurent series expansion, 109
limit point, 6
Liouville’s theorem, 50,264
local bijection, 248
logarithm

branch or sheet, 97
principal branch, 98

Maximum modulus principle,
92

mean-value property, 102;
(I)152

Mellin transform, 177
meromorphic

in the extended complex
plane, 87

Mittag-Leffler’s theorem, 156
modular

character of Eisenstein series,
274

group, 273
Montel’s theorem, 225
Morera’s theorem, 53, 68
multiplicity or order

of a zero, 74

nested sets, 7
normal family, 225

one-point compactification, 89
open covering, 7
open disc, 5
open mapping theorem, 92
order of an elliptic function, 266
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order of growth (entire
function), 138

Paley-Wiener theorem, 122
parametrized curve

piecewise-smooth, 19
smooth, 19

partition function, 293
pentagonal numbers, 294
period parallelogram, 263
phase, 323; (I)3
Phragmén-Lindelöf principle,

124, 129
Picard’s little theorem, 155
Poincaré metric, 256
Poisson integral formula, 45, 67,

109; (I)57
Poisson kernel

unit disc, 67,109, 216;
(I)37,55

upper half-plane, 78, 113;
(I)149

Poisson summation formula,
118; (I)154–156, 165, 174

pole, 74
at infinity, 87
order or multiplicity, 75
simple, 75

polygonal region, 238
power series, 14

expansion, 18
radius and disc of

convergence, 15
prime number theorem, 182
primitive, 22
principal part, 75
Pringsheim interpolation

formula, 156
product formula for sinπz, 142
product formula for 1/Γ, 166
projective special linear group,

223, 315

proper subset, 224
pseudo-hyperbolic distance, 251
Pythagorean triples, 296

radius of convergence, 15
real part (complex number), 2
region, 7

polygonal, 238
regular function, 9
removable singularity, 84

at infinity, 87
residue, 75
residue formula, 77
reverse

of the forbidden Eisenstein
series, 278

orientation, 19
Riemann

hypothesis, 184
mapping theorem, 224
sphere, 89

rotation, 210, 218; (I)177
Rouché’s theorem, 91
Runge’s approximation

theorem, 61, 69

Schwarz
lemma, 218
reflection principle, 60

Schwarz-Christoffel integral,
235

Schwarz-Pick lemma, 251
set

boundary, 6
bounded, 6
closed, 6
closure, 6
compact, 6
convex, 107
diameter, 6
interior, 6
open, 6
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star-shaped, 107
simple curve, 20
simply connected, 96, 231, 345
slit plane, 96
special linear group, 222
stationary phase, 324
steepest descent, 331
sterographic projection, 87
Stirling’s formula, 322, 341
summation by parts, 28; (I)60
Sums of squares

eight squares, 316
four-squares, 304
two-squares, 297

Symmetry principle, 58

Tchebychev ψ-function, 188
theta function, 120, 153, 169,

284; (I)155
three-lines lemma, 133
total ordering, 25
toy contour, 40

orientation, 40
transitive action, 221

trigonometric functions, 16;
(I)35

triple product formula (Jacobi),
286

trivial zeros of ζ, 185

unit disc, 6

Wallis’ product formula, 154,
175

Weierstrass approximation
theorem, 61; (I)54, 63, 144,
163

Weierstrass product, 146
winding number, 347

xi function, 170

zero, 73
order or multiplicity, 74
simple, 74

zeta function ζ, 168;
(I)98,155,166,248


	Book II
	Cover
	Half-Title
	Title
	Copyright
	Authors’ Dedications
	Foreword
	Contents
	Introduction
	Chapter 1. Preliminaries to Complex Analysis
	1.1 Complex numbers and the complex plane
	1.1.1 Basic properties
	1.1.2 Convergence
	1.1.3 Sets in the complex plane

	1.2 Functions on the complex plane
	1.2.1 Continuous functions
	1.2.2 Holomorphic functions
	Complex-valued functions as mappings

	1.2.3 Power series

	1.3 Integration along curves
	1.4 Exercises

	Chapter 2. Cauchy’s Theorem and Its Applications
	2.1 Goursat’s theorem
	2.2 Local existence of primitives and Cauchy’s theorem in a disc
	2.3 Evaluation of some integrals
	2.4 Cauchy’s integral formulas
	2.5 Further applications
	2.5.1 Morera’s theorem
	2.5.2 Sequences of holomorphic functions
	2.5.3 Holomorphic functions defined in terms of integrals
	2.5.4 Schwarz reflection principle
	2.5.5 Runge’s approximation theorem

	2.6 Exercises
	2.7 Problems

	Chapter 3. Meromorphic Functions and the Logarithm
	3.1 Zeros and poles
	3.2 The residue formula
	3.2.1 Examples

	3.3 Singularities and meromorphic functions
	The Riemann sphere

	3.4 The argument principle and applications
	3.5 Homotopies and simply connected domains
	3.6 The complex logarithm
	3.7 Fourier series and harmonic functions
	3.8 Exercises
	3.9 Problems

	Chapter 4. The Fourier Transform
	4.1 The class F
	4.2 Action of the Fourier transform on F
	4.3 Paley-Wiener theorem
	4.4 Exercises
	4.5 Problems

	Chapter 5. Entire Functions
	5.1 Jensen’s formula
	5.2 Functions of finite order
	5.3 Infinite products
	5.3.1 Generalities
	5.3.2 Example: the product formula for the sine function

	5.4 Weierstrass infinite products
	5.5 Hadamard’s factorization theorem
	Main lemmas
	Proof of Hadamard’s theorem

	5.6 Exercises
	5.7 Problems

	Chapter 6. The Gamma and Zeta Functions
	6.1 The gamma function
	6.1.1 Analytic continuation
	6.1.2 Further properties of Γ

	6.2 The zeta function
	6.2.1 Functional equation and analytic continuation

	6.3 Exercises
	6.4 Problems

	Chapter 7. The Zeta Function and Prime Number Theorem
	7.1 Zeros of the zeta function
	7.1.1 Estimates for 1/ζ(s)

	7.2 Reduction to the functions ψ and ψ1
	7.2.1 Proof of the asymptotics for ψ1

	Note on interchanging double sums
	7.3 Exercises
	7.4 Problems

	Chapter 8. Conformal Mappings
	8.1 Conformal equivalence and examples
	8.1.1 The disc and upper half-plane
	8.1.2 Further examples
	8.1.3 The Dirichlet problem in a strip
	Remarks about the Dirichlet problem


	8.2 The Schwarz lemma; automorphisms of the disc and upper half-plane
	8.2.1 Automorphisms of the disc
	8.2.2 Automorphisms of the upper half-plane

	8.3 The Riemann mapping theorem
	8.3.1 Necessary conditions and statement of the theorem
	8.3.2 Montel’s theorem
	8.3.3 Proof of the Riemann mapping theorem

	8.4 Conformal mappings onto polygons
	8.4.1 Some examples
	8.4.2 The Schwarz-Christoffel integral
	8.4.3 Boundary behavior
	8.4.4 The mapping formula
	8.4.5 Return to elliptic integrals

	8.5 Exercises
	8.6 Problems

	Chapter 9. An Introduction to Elliptic Functions
	9.1 Elliptic functions
	9.1.1 Liouville’s theorems
	9.1.2 The Weierstrass ℘ function
	An elliptic function of order two
	Properties of ℘


	9.2 The modular character of elliptic functions and Eisenstein series
	9.2.1 Eisenstein series
	9.2.2 Eisenstein series and divisor functions

	9.3 Exercises
	9.4 Problems

	Chapter 10. Applications of Theta Functions
	10.1 Product formula for the Jacobi theta function
	10.1.1 Further transformation laws

	10.2 Generating functions
	10.3 The theorems about sums of squares
	10.3.1 The two-squares theorem
	10.3.2 The four-squares theorem
	Statement of the theorem


	10.4 Exercises
	10.5 Problems

	Appendix A: Asymptotics
	A.1 Bessel functions
	A.2 Laplace’s method; Stirling’s formula
	A.3 The Airy function
	A.4 The partition function
	A.5 Problems

	Appendix B: Simple Connectivity and Jordan Curve Theorem
	B.1 Equivalent formulations of simple connectivity
	Winding numbers

	B.2 The Jordan curve theorem
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	B.2.1 Proof of a general form of Cauchy’s theorem


	Notes and References
	Bibliography
	Symbol Glossary
	Index


